【題目】若函數(shù)f(x)= 有最大值,則實數(shù)a的取值范圍是(
A.
B.
C.[﹣2,+∞)
D.

【答案】A
【解析】解:由x>a時,f(x)=﹣2x﹣1遞減,可得f(x)<﹣2a﹣1,無最大值,

函數(shù)f(x)= 有最大值,

可得x≤a時,f(x)取得最大值M,且M≥﹣2a﹣1,

由f(x)=﹣(x+1)ex的導(dǎo)數(shù)為f′(x)=﹣(x+2)ex

可得x>﹣2時,f′(x)<0,f(x)遞減;x<﹣2時,f′(x)>0,f(x)遞增.

即有f(x)在x=﹣2處取得極大值,且為最大值e﹣2

若a<﹣2,則f(x)在(﹣∞,a]遞增,可得f(x)≤f(a)=﹣(a+1)ea,

由題意可得﹣(a+1)ea≥﹣2a﹣1,

即有(a+1)ea﹣2a﹣1≤0,

由g(a)=(a+1)ea﹣2a﹣1的導(dǎo)數(shù)為g′(a)=(a+2)ea﹣2<0,(a<﹣2),

則g(a)在a<﹣2遞減,可得g(a)>g(﹣2)=﹣e﹣2+3>0,

則不等式(a+1)ea﹣2a﹣1≤0無實數(shù)解.

故a≥﹣2,可得x=﹣2處f(x)取得最大值,且為﹣e﹣2,

由﹣e﹣2≥﹣2a﹣1,

解得a≥﹣

綜上可得,a的范圍是[﹣ ,+∞).

故選:A.

【考點精析】掌握函數(shù)的最值及其幾何意義是解答本題的根本,需要知道利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(小)值;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))記x為的從小到大的第n()個極植點,證明:
(1)數(shù)列的等比數(shù)列
(2)若則對一切恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們國家正處于老齡化社會中,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數(shù)約有66萬,為了了解老人們的健康狀況,政府從老人中隨機抽取600人并委托醫(yī)療機構(gòu)免費為他們進行健康評估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個等級,并以80歲為界限分成兩個群體進行統(tǒng)計,樣本分布被制作成如圖表:
(1)若采用分層抽樣的方法再從樣本中的不能自理的老人中抽取8人進一步了解他們的生活狀況,則兩個群體中各應(yīng)抽取多少人?
(2)估算該市80歲及以上長者占全市戶籍人口的百分比;
(3)據(jù)統(tǒng)計該市大約有五分之一的戶籍老人無固定收入,政府計劃為這部分老人每月發(fā)放生活補貼,標(biāo)準(zhǔn)如下: ①80歲及以上長者每人每月發(fā)放生活補貼200元;
②80歲以下老人每人每月發(fā)放生活補貼120元;
③不能自理的老人每人每月額外發(fā)放生活補貼100元.試估計政府執(zhí)行此計劃的年度預(yù)算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的最小正周期為4π,則(
A.函數(shù)f(x)的圖象關(guān)于原點對稱
B.函數(shù)f(x)的圖象關(guān)于直線 對稱
C.函數(shù)f(x)圖象上的所有點向右平移 個單位長度后,所得的圖象關(guān)于原點對稱
D.函數(shù)f(x)在區(qū)間(0,π)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex+x2﹣x,g(x)=x2+ax+b,a,b∈R. (Ⅰ)當(dāng)a=1時,求函數(shù)F(x)=f(x)﹣g(x)的單調(diào)區(qū)間;
(Ⅱ)若曲線y=f(x)在點(0,1)處的切線l與曲線y=g(x)切于點(1,c),求a,b,c的值;
(Ⅲ)若f(x)≥g(x)恒成立,求a+b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年3月14日,“ofo共享單車”終于來到蕪湖,ofo共享單車又被親切稱作“小黃車”是全球第一個無樁共享單車平臺,開創(chuàng)了首個“單車共享”模式.相關(guān)部門準(zhǔn)備對該項目進行考核,考核的硬性指標(biāo)是:市民對該項目的滿意指數(shù)不低于0.8,否則該項目需進行整改,該部門為了了解市民對該項目的滿意程度,隨機訪問了使用共享單車的100名市民,并根據(jù)這100名市民對該項目滿意程度的評分,繪制了如下頻率分布直方圖: (I)為了了解部分市民對“共享單車”評分較低的原因,該部門從評分低于60分的市民中隨機抽取2人進行座談,求這2人評分恰好都在[50,60)的概率;
(II)根據(jù)你所學(xué)的統(tǒng)計知識,判斷該項目能否通過考核,并說明理由.
(注:滿意指數(shù)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行所給的程序框圖,則輸出的值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣1)lnx﹣(x﹣a)2(a∈R). (Ⅰ)若f(x)在(0,+∞)上單調(diào)遞減,求a的取值范圍;
(Ⅱ)若f(x)有兩個極值點x1 , x2 , 求證:x1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四面體ABCD中,已知平面BCD⊥平面ABC,BD⊥DC,BC=6,AB=4 ,∠ABC=30°.
(1)求證:AC⊥BD;
(2)若二面角B﹣AC﹣D為45°,求直線AB與平面ACD所成的角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案