2.已知函數(shù)f(x)=lnx+2的圖象與直線y=x+a恰好有一個交點(diǎn),設(shè)g(x)=ex-$\frac{1}{2}$x2-ax,當(dāng)x∈[1,2]時,不等式-m≤g(x)≤m2-4恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,-e+$\frac{3}{2}$]B.[-e+$\frac{3}{2}$,e]C.[-e,e]D.[e,+∞)

分析 用導(dǎo)數(shù)求出曲線上某點(diǎn)切線方程,即可得到a的值,再利用導(dǎo)數(shù)求出函數(shù)g(x)=ex-$\frac{1}{2}$x2-aX,當(dāng)x∈[1,2]時的最值,再根據(jù)不等式-m≤g(x)≤m2-4恒成立,求的m的范

解答 解:∵函數(shù)f(x)=lnx+2的圖象與直線y=x+a恰好有一個交點(diǎn),
∴直線y=x+a與f(x)=lnx+2相切,
設(shè)曲線的切點(diǎn)為P(x0,y0),
∵f′(x)=$\frac{1}{x}$,
∴f′(x0)=$\frac{1}{{x}_{0}}$=1,
∴x0=1,
∴y0=lnx0+2=2,
∴1+a=2,
∴a=1,
∴g(x)=ex-$\frac{1}{2}$x2-x,
∴g′(x)=ex-x-1,x∈[1,2]
設(shè)h(x)=ex-x-1,x∈[1,2]
∴h′(x)=ex-1>0在[1,2]恒成立,
∴h(x)=ex-x-1,x∈[1,2]為增函數(shù),
∴h(x)min=h(1)=e-2>0,
∴g′(x)>0在[1,2]恒成立,
∴g(x)=ex-$\frac{1}{2}$x2-x在[1,2]為增函數(shù),
∴g(1)≤g(x)≤g(2),
即e$-\frac{3}{2}$≤g(x)≤e2-4,
∵當(dāng)x∈[1,2]時,不等式-m≤g(x)≤m2-4恒成立
∴$\left\{\begin{array}{l}{-m≤e-\frac{3}{2}}\\{{m}^{2}-4≥{e}^{2}-4}\end{array}\right.$
解得m≥e,
故選:D.

點(diǎn)評 本題考查了導(dǎo)數(shù)和函數(shù)的最值的關(guān)系,以及導(dǎo)數(shù)的集合意義,以及恒成立的問題,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知四邊形ABCD中,∠ABC=∠ACB=58°,∠CAD=48°,∠BCD=30°,求∠BAD的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=2x3+5$\sqrt{2{x^3}-1}$的最小值是( 。
A.-3?B.1C.$-\frac{21}{4}$?D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下面幾種推理過程是演繹推理的是(  )
A.兩條直線平行,同旁內(nèi)角互補(bǔ),如果∠A和∠B是兩條平行直線的同旁內(nèi)角,則∠A+∠B=180°
B.由平面三角形的性質(zhì),推測空間四面體的性質(zhì)
C.某校高三共有10個班,1班有51人,2班有53人,三班有52人,由此推測各班都超過50人
D.在數(shù)列{an}中,a1=1,an=$\frac{1}{2}$(an-1+$\frac{1}{{a}_{n-1}}$)(n≥2),計算a2、a3,a4,由此猜測通項(xiàng)an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若x,y滿足約束條件$\left\{\begin{array}{l}{x+2y-2≥0}\\{x-y+3≥0}\\{x≤3}\end{array}\right.$,則z=2x+y的最大值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=lg(1+x)-lg(1-x).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性,并說明理由;
(3)若f(x)>0,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知集合A={x|log2(4x)•log2x≤0}
(1)求集合A;
(2)求函數(shù)y=42x+1+4x(x∈A)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知二次函數(shù)f(x)滿足f(x+1)-f(x)=4x,且f(0)=1.
(1)求二次函數(shù)f(x)的解析式.
(2)求函數(shù)g(x)=($\frac{1}{2}$)f(x)的單調(diào)增區(qū)間和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù),a≠0,x∈R).
(1)當(dāng)函數(shù)f(x)的圖象過點(diǎn)(-1,0),且方程f(x)=0有且只有一個根,求f(x)的表達(dá)式;
(2)當(dāng)函數(shù)f(x)的圖象過點(diǎn)(-1,0),且函數(shù)f(x)在區(qū)間[-1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)若F(x)=$\left\{{\begin{array}{l}{f(x),x>0}\\{-f(x),x<0}\end{array}}$,當(dāng)mn<0,m+n>0,a>0且函數(shù)f(x)為偶函數(shù)時,試判斷F(m)+F(n)能否大于0?

查看答案和解析>>

同步練習(xí)冊答案