15.若直線y=2x-b在x軸上的截距為1,則b=(  )
A.1B.-1C.$\frac{1}{2}$D.2

分析 根據(jù)直線y=2x-b在x軸上的截距為1,得到y(tǒng)=0時(shí)x=1,由此得到b.

解答 解:因?yàn)橹本y=2x-b在x軸上的截距為1,所以0=2×1-b,所以b=2;
故選:D.

點(diǎn)評(píng) 本題考查了直線在坐標(biāo)軸上的截距;屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}是各項(xiàng)均為正數(shù)有窮數(shù)列,數(shù)列{bn}滿足kbk=a1+a2+…+ak(k=1,2,…,n)
(1)若數(shù)列{bn}的通項(xiàng)公式bn=n,求數(shù)列{an}的通項(xiàng)公式;
(2)①若數(shù)列{an}為遞增數(shù)列,試判斷數(shù)列{bn}是否為遞增數(shù)列?如果是,請(qǐng)加以證明;如果不是,說(shuō)明理由;
②若數(shù)列{bn}為遞增數(shù)列,試判斷數(shù)列{an}是否為遞增數(shù)列?如果是,請(qǐng)加以證明;如果不是,說(shuō)明理由;
(3)設(shè)數(shù)列{Cn}、{Dn}滿足:Cn=(a1-b12+(a2-b22+…+(an-bn2,Dn=(a1-bn2+(a2-bn2+…+(an-bn2,求證:Cn≤Dn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.一個(gè)商場(chǎng)經(jīng)銷(xiāo)某種商品,根據(jù)以往資料統(tǒng)計(jì),每位顧客采用的分期付款次數(shù)ξ的分布列為:
ξ12345
P0.40.20.20.10.1
商場(chǎng)經(jīng)銷(xiāo)一件該商品,采用1期付款,其利潤(rùn)為200元;采用2期或3期付款,其利潤(rùn)為250元;采用4期或5期付款,其利潤(rùn)為300元.η表示經(jīng)銷(xiāo)一件該商品的利潤(rùn).
(1)求購(gòu)買(mǎi)該商品的3位顧客中,恰有2位采用1期付款的概率;
(2)求η的分布列及期望E(η).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知直線x-$\sqrt{3}$y-1=0與圓C:(x-1)2+(y-2)2=4交于A,B兩點(diǎn),則弦AB的長(zhǎng)為( 。
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=asinx+cosx的圖象經(jīng)過(guò)點(diǎn)$(\frac{π}{2},-1)$.
(1)求函數(shù)f(x)的最小正周期與單調(diào)遞增區(qū)間.
(2)若$θ∈({0,\frac{π}{2}})$,且f(θ)=$\frac{1}{2}$,求sin2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.若{an}是等比數(shù)列,a2=2,a5=$\frac{1}{4}$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求和:a1a2+a2a3+…+anan+1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在平面直角坐標(biāo)系中,若不等式組$\left\{\begin{array}{l}x+y-2≤0\\ x-y+2≥0\\ y≥t\end{array}\right.$表示的平面區(qū)域的面積為1,則實(shí)數(shù)t的值為( 。
A.0B.1C.3D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知冪函數(shù)f(x)的圖象經(jīng)過(guò)(9,3),則f(4)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為90分至150分之間的整數(shù))分成六組[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問(wèn)題:
(1)求分?jǐn)?shù)在[130,140)內(nèi)的頻率;
(2)若在同一數(shù)據(jù)中,將該組區(qū)間的中點(diǎn)值(如:組區(qū)間[100,110)的中點(diǎn)值為$\frac{100+110}{2}$=105)作為這組數(shù)據(jù)的平均分,據(jù)此估計(jì)本次考試的平均分;
(3)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2人,求恰好這2人在分?jǐn)?shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案