在如圖給出的程序中,若輸入a=333,k=5,則輸出的b為
 

考點(diǎn):程序框圖
專題:算法和程序框圖
分析:由已知中的程序語(yǔ)句,可得該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量b的值,模擬程序的運(yùn)行過(guò)程,可得答案.
解答: 解:第一次執(zhí)行循環(huán)體后,q=66,r=3,b=3,a=66,不滿足退出循環(huán)的條件;
再次執(zhí)行循環(huán)體后,q=13,r=1,b=13,a=13,不滿足退出循環(huán)的條件;
再次執(zhí)行循環(huán)體后,q=2,r=3,b=313,a=2,不滿足退出循環(huán)的條件;
再次執(zhí)行循環(huán)體后,q=0,r=2,b=2313,a=0,不滿足退出循環(huán)的條件;
故輸出的結(jié)果為:2313,
故答案為:2313
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是程序語(yǔ)句,當(dāng)循環(huán)次數(shù)不多時(shí),我們多采用模擬循環(huán)執(zhí)行的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的首項(xiàng)a1=2013,公比q=-
1
2
,數(shù)列{an}前n項(xiàng)和記為Sn,前n項(xiàng)積記為T(mén)n
(1)證明:S2≤Sn≤S1
(2)求n為何值時(shí),Tn取得最大值;
(3)證明:若數(shù)列{an}中的任意相鄰三項(xiàng)按從小到大排列,則總可以使其成等差數(shù)列;若所有這些等差數(shù)列的公差按從小到大的順序依次記為d1,d2,…,dn,則數(shù)列{dn}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x+
1
x
(x∈(-∞,0)∪(0,+∞))的圖象為c1,c1關(guān)于點(diǎn)A(2,1)的對(duì)稱圖象為c2,c2對(duì)應(yīng)的函數(shù)為g(x).
(1)求函數(shù)g(x)的解析式,并確定其定義域;
(2)若直線y=b與c2只有一個(gè)交點(diǎn),求b的值,并求出交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

人民日?qǐng)?bào)3月14日?qǐng)?bào)道,中國(guó)人民銀行已下發(fā)通知,要求暫停二維碼(條碼)支付,虛擬信用卡等支付業(yè)務(wù)和產(chǎn)品.前不久,某調(diào)研機(jī)構(gòu)調(diào)研了在校大學(xué)生網(wǎng)上購(gòu)物的情況,隨機(jī)調(diào)查了16位在校大學(xué)生的網(wǎng)購(gòu)比例,結(jié)果如莖葉圖所示(圖中莖7葉3表示73%,其余相同):
(Ⅰ)求從這16個(gè)在校大學(xué)生隨機(jī)選取3個(gè),至多有1個(gè)網(wǎng)購(gòu)比例不低于95%的概率;
(Ⅱ)以這16個(gè)在校大學(xué)生的樣本數(shù)據(jù)來(lái)估計(jì)全國(guó)的總體數(shù)據(jù),若從全國(guó)任選3位大學(xué)生,記ξ表示抽到網(wǎng)購(gòu)比例不低于95%的人數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線y=-x+4與兩坐標(biāo)軸分別相交于A、B點(diǎn),點(diǎn)M(x,y)是線段AB上任意一點(diǎn)(A、B兩點(diǎn)除外),過(guò)M分別作MC⊥OA于點(diǎn)C,MD⊥OB于D.
(1)當(dāng)點(diǎn)M在AB上運(yùn)動(dòng)時(shí),你認(rèn)為四邊形OCMD的周長(zhǎng)是否發(fā)生變化?并說(shuō)明理由.
(2)設(shè)四邊形OCMD面積S,求S與x的函數(shù)關(guān)系式,并求出當(dāng)四邊形OCMD為正方形時(shí)的面積.
(3)當(dāng)四邊形OCMD為正方形時(shí),將四邊形OCMD沿著x軸的正方向移動(dòng),設(shè)平移的距離為a(0<a<4),求當(dāng)a為多少時(shí)正方形OCMD的周長(zhǎng)被分為1:3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四面體ABCD中,已知AC⊥BD,∠BAC=∠CAD=45°,∠BAD=60°,求證:平面ABC⊥平面ACD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知四棱錐P-ABCD的底面是菱形,∠DAB=
π
3
,AC∩BD=O,PO⊥平面ABCD,E、F分別在棱PC、PA上,CE=
1
3
CP,AF=
1
3
AP,G為PD中點(diǎn),△PBD是邊長(zhǎng)為6的等邊三角形.
(Ⅰ)求證:B、E、C、F四點(diǎn)共面;
(Ⅱ)求直線EP與平面BECF所成角的正弦值;
(Ⅲ)求平面BECF與平面ABCD所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三棱錐P-ABC中,PA⊥平面ABC,AP=AB=2
3
,AC=4,D為PC的中點(diǎn),PB⊥AD.
(1)證明:BC⊥AB;
(2)求二面角B-AD-C大小的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式:照此規(guī)律,第n個(gè)等式可為
 

2=1×2
2+4=2×3
2+4+6=3×4
2+4+6+8=4×5

查看答案和解析>>

同步練習(xí)冊(cè)答案