【題目】1)若,恒成立,求實(shí)數(shù)的最大值

2)在(1)的條件下,求證:函數(shù)在區(qū)間內(nèi)存在唯一的極大值點(diǎn),且

【答案】1.(2)家粘結(jié)性

【解析】

1)令,求出導(dǎo)函數(shù),由確定增區(qū)間,確定減區(qū)間,從而得的最小值,得的取值范圍,即得;

2)求出導(dǎo)函數(shù),通分后,令,再求導(dǎo)數(shù),令.分類討論,當(dāng)時(shí),,得遞減,從而可得上有唯一零點(diǎn)時(shí),令.利用導(dǎo)數(shù)得的單調(diào)性,從而得,于是得出在的單調(diào)性,得唯一極大值點(diǎn).由可對(duì)變形,得,只要證明在,從而可證得結(jié)論.

1)解:令,則

可見,;

故函數(shù)上單調(diào)遞減,在上單調(diào)遞增.

所以,當(dāng)且僅當(dāng)時(shí),函數(shù)取最小值1

由題意,實(shí)數(shù).所以

2)由(1),

,

①當(dāng)時(shí),,,所以

可見,,所以上單調(diào)遞減.

(由(1),可得,所以),

,所以存在唯一的,使得

從而,當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

②當(dāng)時(shí),令

.所以上單調(diào)遞減.

所以(由(1),可得,所以).

又當(dāng)時(shí),,,,

所以當(dāng)時(shí),,從而.所以單調(diào)遞增.

綜上所述,上單調(diào)遞增,在上單詞遞減.

所以,函數(shù)在區(qū)間內(nèi)存在唯一極大值點(diǎn)

關(guān)于的證明如下:

由上面的討論,,且,所以,所以

于是

.當(dāng)時(shí),.所以上單調(diào)遞增.所以,當(dāng)時(shí),,即

又因?yàn)?/span>,所以,所以

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為,直線與拋物線交于兩點(diǎn).

1)若過(guò)點(diǎn),且,求的斜率;

2)若,且的斜率為,當(dāng)時(shí),求軸上的截距的取值范圍(用表示),并證明的平分線始終與軸平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù),求的極值;

(2)證明:.

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)一個(gè)盒子里裝有三張卡片,分別標(biāo)記有數(shù)字,,這三張卡片除標(biāo)記的數(shù)字外完全相同。隨機(jī)有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,.

)求抽取的卡片上的數(shù)字滿足的概率;

)求抽取的卡片上的數(shù)字,不完全相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,已知,,.是線段的中點(diǎn).

1)求直線與平面所成角的正弦值;

2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列、、滿足

1)若數(shù)列是等比數(shù)列,試判斷數(shù)列是否為等比數(shù)列,并說(shuō)明理由;

2)若恰好是一個(gè)等差數(shù)列的前項(xiàng)和,求證:數(shù)列是等差數(shù)列;

3)若數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,數(shù)列是等差數(shù)列,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足,,.

1)若.

①求數(shù)列的通項(xiàng)公式;

②證明:對(duì) .

2)若,且對(duì),有,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某地網(wǎng)民瀏覽購(gòu)物網(wǎng)站的情況,從該地隨機(jī)抽取100名網(wǎng)民進(jìn)行調(diào)查,其中男性、女性人數(shù)分別為6040.下面是根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)的數(shù)據(jù),將日均瀏覽購(gòu)物網(wǎng)站時(shí)間不低于40分鐘的網(wǎng)民稱為網(wǎng)購(gòu)達(dá)人,已知網(wǎng)購(gòu)達(dá)人中女性人數(shù)為15人.

日均瀏覽購(gòu)物網(wǎng)站時(shí)間(分鐘)

人數(shù)

2

14

24

35

20

5

1)根據(jù)已知條件完成下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為是否為網(wǎng)購(gòu)達(dá)人與性別有關(guān);

非網(wǎng)購(gòu)達(dá)人

網(wǎng)購(gòu)達(dá)人

總計(jì)

15

總計(jì)

2)從上述調(diào)查中的網(wǎng)購(gòu)達(dá)人中按性別分層抽樣,抽取5人發(fā)放禮品,再?gòu)倪@5人中隨機(jī)選出2人作為最美網(wǎng)購(gòu)達(dá)人,求這兩個(gè)最美網(wǎng)購(gòu)達(dá)人中恰好為11女的概率.

參考公式:,其中

參考數(shù)據(jù):

010

005

0025

0010

0005

0001

2706

3841

5024

6635

7879

10828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校擬從甲、乙兩名同學(xué)中選一人參加疫情知識(shí)問(wèn)答競(jìng)賽,于是抽取了甲、乙兩人最近同時(shí)參加校內(nèi)競(jìng)賽的十次成績(jī),將統(tǒng)計(jì)情況繪制成如圖所示的折線圖.根據(jù)該折線圖,下面結(jié)論正確的是(

A.甲、乙成績(jī)的中位數(shù)均為7

B.乙的成績(jī)的平均分為6.8

C.甲從第四次到第六次成績(jī)的下降速率要大于乙從第四次到第五次的下降速率

D.甲的成績(jī)的方差小于乙的成績(jī)的方差

查看答案和解析>>

同步練習(xí)冊(cè)答案