【題目】已知數(shù)列滿足,,.
(1)若.
①求數(shù)列的通項公式;
②證明:對, .
(2)若,且對,有,證明:.
【答案】(1)①;②證明見解析;(2)證明見解析
【解析】
(1)①當(dāng)時,,兩邊取倒數(shù),再根據(jù)數(shù)列遞推關(guān)系,可得出數(shù)列是首項為2,公差為1的等差數(shù)列,即可求出數(shù)列的通項公式;
②由①知,利用裂項公式整理得出,則對,根據(jù)裂項相消法即可求出;
(2)當(dāng)時,,則,由于,則,根據(jù)基本不等式得出,化簡整理有,最后再利用基本不等式,即可證明出.
解:(1)①當(dāng)時,,
∵,∴,依此類推,
∴,∴,
∴數(shù)列是首項為2,公差為1的等差數(shù)列,
∴,即,
②證明:由①知,故對
,
∴
=
=,
(2)證明:當(dāng)時,,
則,
∵,則,得,
∴
=
=,
∵與不能同時成立,所以上式“=”不成立,
即對,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】棋盤上標(biāo)有第、、、、站,棋子開始位于第站,棋手拋擲均勻硬幣走跳棋游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到調(diào)到第站或第站時,游戲結(jié)束.設(shè)棋子位于第站的概率為.
(1)當(dāng)游戲開始時,若拋擲均勻硬幣次后,求棋手所走步數(shù)之和的分布列與數(shù)學(xué)期望;
(2)證明:;
(3)求、的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了了解該校高三年級學(xué)生寒假在家自主學(xué)習(xí)的情況,隨機(jī)對該校300名高三學(xué)生寒假的每天學(xué)習(xí)時間(單位:h)進(jìn)行統(tǒng)計,按照,,,,的分組作出頻率分布直方圖如圖所示.
(Ⅰ)根據(jù)頻率分布直方圖計算該校高三年級學(xué)生的平均每天學(xué)習(xí)時間(同一組中的數(shù)據(jù)用該組區(qū)間中點值代表);
(Ⅱ)該校規(guī)定學(xué)習(xí)時間超過4h為合格,否則不合格.已知這300名學(xué)生中男生有140人,其中合格的有70人,請補(bǔ)全下表,根據(jù)表中數(shù)據(jù),能否有99.9%的把握認(rèn)為該校高三年級學(xué)生的性別與學(xué)習(xí)時長合格有關(guān)?
男生 | 女生 | 總計 | |
不合格 | |||
合格 | 70 | ||
總計 | 140 | 160 | 300 |
參考公式:,其中.
參考附表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)若,恒成立,求實數(shù)的最大值;
(2)在(1)的條件下,求證:函數(shù)在區(qū)間內(nèi)存在唯一的極大值點,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定個不同的數(shù)、、、、,它的某一個排列的前項和為,該排列中滿足的的最大值為.記這個不同數(shù)的所有排列對應(yīng)的之和為.
(1)若,求;
(2)若,.
①證明:對任意的排列,都不存在使得;
②求(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年全國數(shù)學(xué)奧賽試行改革:在高二一年中舉行5次全區(qū)競賽,學(xué)生如果其中2次成績達(dá)全區(qū)前20名即可進(jìn)入省隊培訓(xùn),不用參加其余的競賽,而每個學(xué)生最多也只能參加5次競賽.規(guī)定:若前4次競賽成績都沒有達(dá)全區(qū)前20名,則第5次不能參加競賽.假設(shè)某學(xué)生每次成績達(dá)全區(qū)前20名的概率都是,每次競賽成績達(dá)全區(qū)前20名與否互相獨立.
(1)求該學(xué)生進(jìn)入省隊的概率.
(2)如果該學(xué)生進(jìn)入省隊或參加完5次競賽就結(jié)束,記該學(xué)生參加競賽的次數(shù)為,求的分布列及的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的內(nèi)接等邊三角形的面積為(其中為坐標(biāo)原點).
(1)試求拋物線的方程;
(2)已知點兩點在拋物線上,是以點為直角頂點的直角三角形.
①求證:直線恒過定點;
②過點作直線的垂線交于點,試求點的軌跡方程,并說明其軌跡是何種曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖統(tǒng)計了截止到2019年年底中國電動汽車充電樁細(xì)分產(chǎn)品占比及保有量情況,關(guān)于這5次統(tǒng)計,下列說法正確的是( )
A.私人類電動汽車充電樁保有量增長率最高的年份是2018年
B.公共類電動汽車充電樁保有量的中位數(shù)是25.7萬臺
C.公共類電動汽車充電樁保有量的平均數(shù)為23.12萬臺
D.從2017年開始,我國私人類電動汽車充電樁占比均超過50%
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1是矩形,,,M為的中點,將沿翻折,得到四棱錐,如圖2.
(Ⅰ)若點N為的中點,求證:平面;
(Ⅱ)若.求點A到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com