2.直線l1:2x-y-1=0與直線l2:mx+y+1=0互相垂直的充要條件是(  )
A.m=-2B.m=-$\frac{1}{2}$C.m=$\frac{1}{2}$D.m=2

分析 由兩直線ax+by+c=0與mx+ny+d=0垂直?am+bn=0解得即可.

解答 解:直線l1:2x-y-1=0與直線l2:mx+y+1=0?2m-1=0?m=$\frac{1}{2}$.
故選C.

點(diǎn)評 本題主要考查兩直線垂直的條件,同時(shí)考查充要條件的含義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)$f(x)=\frac{x}{{1+{x^2}}}$,x∈(0,1).
(1)令x1,x2∈(0,1),證明:(x1-x2)•[f(x1)-f(x2)]≥0;
(2)若x∈(0,1)時(shí),恒有$\frac{{3{x^2}-x}}{{1+{x^2}}}≥a({x-\frac{1}{3}})$,求a的值;
(3)若x1,x2,x3都是正數(shù),且x1+x2+x3=1,求$y=\frac{{3x_1^2-{x_1}}}{1+x_1^2}+\frac{{3x_2^2-{x_2}}}{1+x_2^2}+\frac{{3x_3^2-{x_3}}}{1+x_3^2}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)全集A={1,2,3,4,5},B={2,4,6,8,10},則A∪B=( 。
A.{2,4}B.{1,2,3,4,5,6,8,10}
C.{1,2,3,4,5}D.{2,4,6,8,10}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,在三棱柱ABC-A1B1C1中,底面ABC為正三角形,側(cè)棱AA1⊥面ABC,若AB=AA1,則直線A1B與AC所成角的余弦值為(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{4}$C.$\frac{\sqrt{14}}{2}$D.$\frac{\sqrt{14}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.i是虛數(shù)單位,復(fù)數(shù)$\frac{4i}{1-i}$等于(  )
A.-2-2iB.2-2iC.-2+2iD.2+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.從甲、乙、丙、丁四名同學(xué)中選2人參加普法知識(shí)競賽,則甲被選中的概率為(  )
A.$\frac{3}{4}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-3,4),則$\overrightarrow{a}$•$\overrightarrow$的值等于5;$\overrightarrow{a}$與$\overrightarrow$夾角的余弦值等于$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.一個(gè)四棱錐的三視圖如圖所示,則這個(gè)四棱錐的體積等于( 。
A.8B.4C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=lnx-ax在x=2處的切線l與直線x+2y-3=0平行.記函數(shù)g(x)=f(x)+$\frac{1}{2}{x^2}$-bx.
(1)求實(shí)數(shù)a的值;
(2)令h(x)=g(x)+2x,若h(x)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)b的取值范圍;
(3)設(shè)x1,x2(x1<x2)是函數(shù)g(x)的兩個(gè)極值點(diǎn),若b≥$\frac{3}{2}$,且g(x1)-g(x2)≥k恒成立,求實(shí)數(shù)k的最大值.

查看答案和解析>>

同步練習(xí)冊答案