如圖,在△ABC中,P為中線AO上一個動點,若AO=2,則
PA
•(
PB
+
PC
)的最小值是( 。
A、-2
B、-1
C、-
1
2
D、0
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:P為中線AO上一個動點,可得
PB
+
PC
=2
PO
,于是
PA
•(
PB
+
PC
)=2
PA
PO
=-2|
PA
||
PO
|
,再利用基本不等式的性質(zhì)即可得出.
解答: 解:∵P為中線AO上一個動點,
PB
+
PC
=2
PO

PA
•(
PB
+
PC
)=2
PA
PO
=-2|
PA
||
PO
|
≥-
(|
PA
|+|
PO
|)2
2
=-2,當且僅當|
PA
|=|
PO
|
=1時取等號.
PA
•(
PB
+
PC
)的最小值是-2.
故選:A.
點評:本題考查了向量的平行四邊形法則、數(shù)量積性質(zhì)、基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一幾何體如圖所示,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°.FC⊥平面ABCD,CB=CD=CEF=1.
(1)求證:AC⊥平面BCF;
(2)求二面角F-BD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐P-ABC中,底面ABC為邊長為2
3
的正三角形,平面PBC⊥平面ABC,PB=PC=2,D 為AP上一點,AD=2DP,O為底面三角形中心.
(Ⅰ) 求證:BD⊥AC;
(Ⅱ) 設(shè)M為PC中點,求二面角M-BD-O的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記空間向量
OA
=
a
,
OB
=
b
,
OC
=
c
,其中
a
,
b
c
均為單位向量.若
a
b
,且
c
a
,
b
的夾角均為θ,θ∈[0,π].有以下結(jié)論:
c
⊥(
a
-
b
);
②直線OC與平面OAB所成角等于向量
c
a
+
b
的夾角;
③若向量
a
+
b
所在直線與平面ABC垂直,則θ=60°;
④當θ=90°時,P為△ABC內(nèi)(含邊界)一動點,若向量
OP
a
+
b
+
c
夾角的余弦值為
6
3
,則動點P的軌跡為圓.
其中,正確的結(jié)論有
 
(寫出所有正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
b
={3,4},
a
b
=5,|
a
-
b
|=2
5
,則|
a
|=( 。
A、5
B、25
C、2
5
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

沿一條小路前進,從A到B,方位角是50°,距離是470m,從B到C,方位角是80°,距離是860m,從C到D,方位角是150°,距離是640m.試畫出示意圖,并計算出從A到D的方位角和距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a1
=2
i
-
j
+
k
,
a2
=
j
+3
j
-2
k
,
a3
=-2
i
+
j
-3
k
,
a4
=3
i
+2
j
+5
k
,
i
j
,
k
是空間兩兩垂直的單位向量是否存在實數(shù)λμγ,使
a4
a1
a2
a3
成立?不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)有n(n≥2)條直線,任何兩條都不平行,任何三條不過同一點,問交點的個數(shù)f(n)為多少?并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}為等比數(shù)列,其中a4=2,a5=5,閱讀如圖所示的程度框圖,運行相應(yīng)的程序,則輸出結(jié)果為
 

查看答案和解析>>

同步練習(xí)冊答案