(本小題滿分12分)

過拋物線焦點(diǎn)垂直于對稱軸的弦叫做拋物線的通徑。如圖,已知拋物線,過其焦點(diǎn)F的直線交拋物線于、 兩點(diǎn)。過作準(zhǔn)線的垂線,垂足分別為.

(1)求出拋物線的通徑,證明都是定值,并求出這個(gè)定值;
(2)證明: .

(1)通徑,證明:時(shí),、,是定值;AB與x軸不垂直時(shí),設(shè)AB:所以,是定值(2)

解析試題分析:焦點(diǎn),準(zhǔn)線
(1)時(shí),通徑、,是定值.
AB與x軸不垂直時(shí),設(shè)AB:
,所以,是定值.
(2),
所以
方法二:由拋物線知:
考點(diǎn):拋物線性質(zhì)及直線與拋物線相交
點(diǎn)評(píng):直線與圓錐曲線相交時(shí),聯(lián)立方程利用韋達(dá)定理是常用的方法

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題14分)拋物線與直線相交于兩點(diǎn),且
(1)求的值。
(2)在拋物線上是否存在點(diǎn),使得的重心恰為拋物線的焦點(diǎn),若存在,求點(diǎn)的坐標(biāo),若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓)的一個(gè)頂點(diǎn)為,離心率為,直線與橢圓交于不同的兩點(diǎn).(1) 求橢圓的方程;(2) 當(dāng)的面積為時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn)分別為,離心率。
(1)求橢圓方程;
(2)一條不與坐標(biāo)軸平行的直線l與橢圓交于不同的兩點(diǎn)M、N,且線段MN中點(diǎn)的橫坐標(biāo)為–,求直線l傾斜角的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)直線l:y=kx+1與雙曲線C:的右支交于不同的兩點(diǎn)A,B
(Ⅰ)求實(shí)數(shù)k的取值范圍;
(Ⅱ)是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過雙曲線C的右焦點(diǎn)F?若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分16分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(文)已知橢圓的一個(gè)焦點(diǎn)為,點(diǎn)在橢圓上,點(diǎn)滿足(其中為坐標(biāo)原點(diǎn)), 過點(diǎn)作一斜率為的直線交橢圓于、兩點(diǎn)(其中點(diǎn)在軸上方,點(diǎn)在軸下方) .

(1)求橢圓的方程;
(2)若,求的面積;
(3)設(shè)點(diǎn)為點(diǎn)關(guān)于軸的對稱點(diǎn),判斷的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知是長軸為的橢圓上三點(diǎn),點(diǎn)是長軸的一個(gè)頂點(diǎn),過橢圓中心,且.

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求橢圓方程;
(2)如果橢圓上兩點(diǎn)使直線軸圍成底邊在軸上的等腰三角形,是否總存在實(shí)數(shù)使?請給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分) 設(shè)橢圓E中心在原點(diǎn),焦點(diǎn)在x軸上,短軸長為4,點(diǎn)M(2,)在橢圓上,。
(1)求橢圓E的方程;
(2)設(shè)動(dòng)直線L交橢圓E于A、B兩點(diǎn),且,求△OAB的面積的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知雙曲線與橢圓有相同焦點(diǎn),且經(jīng)過點(diǎn),
求該雙曲線方程,并求出其離心率、漸近線方程,準(zhǔn)線方程。

查看答案和解析>>

同步練習(xí)冊答案