【題目】已知橢圓C:(a>b>0)的離心率為 ,若圓x2+y2=a2被直線x﹣y﹣=0截得的弦長(zhǎng)為2

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)已知點(diǎn)A、B為動(dòng)直線y=k(x﹣1),k≠0與橢圓C的兩個(gè)交點(diǎn),問(wèn):在x軸上是否存在定點(diǎn)M,使得 為定值?若存在,試求出點(diǎn)M的坐標(biāo)和定值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1) (2)

【解析】試題分析:

(1)由題意求得a,b的值可得橢圓方程為;

(2)聯(lián)立直線與橢圓的方程,結(jié)合題意可得,存在點(diǎn) 滿足 為定值 .

試題解析:

解:(I)圓x2+y2=a2的圓心(0,0)到直線x﹣y﹣=0的距離d==1,

2=2,解得a2=2,又=,a2=b2+c2,

聯(lián)立解得:a2=2,c=1=b.

∴橢圓C的標(biāo)準(zhǔn)方程為: +y2=1.

(II)假設(shè)在x軸上存在定點(diǎn)M(m,0),使得為定值.

設(shè)A(x1,y1),B(x2,y2),聯(lián)立,化為:(1+2k2)x2﹣4k2x+2k2﹣2=0,

x1+x2=,x1x2=

=(x1﹣m,y1)(x2﹣m,y2)=(x1﹣m)(x2﹣m)+y1y2=(x1﹣m)(x2﹣m)+k2(x1﹣1)(x2﹣1)=(1+k2)x1x2﹣(m+k2)(x1+x2+m2+k2

=(1+k2﹣(m+k2+m2+k2

=,

2m2﹣4m+1=2(m2﹣2),解得m=

因此在x軸上存在定點(diǎn)M(,0),使得為定值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ex(ax+b)(其中e=2.71828…),g(x)=x2+2bx+2,已知它們?cè)趚=0處有相同的切線.
(1)求函數(shù)f(x),g(x)的解析式;
(2)若函數(shù)F(x)=f(x)+g(x)﹣2(ex+x),試判斷函數(shù)F(x)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由;
(3)若函數(shù)f(x)在[t,t+1](t>﹣3)上的最小值為φ(t),解關(guān)于t的不等式φ(t)≤4e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)到點(diǎn)和直線l 的距離相等.

(Ⅰ)求動(dòng)點(diǎn)的軌跡E的方程;

(Ⅱ)已知不與垂直的直線與曲線E有唯一公共點(diǎn)A,且與直線的交點(diǎn)為,以AP為直徑作圓.判斷點(diǎn)和圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“現(xiàn)代五項(xiàng)”是由現(xiàn)代奧林匹克之父顧拜旦先生創(chuàng)立的運(yùn)動(dòng)項(xiàng)目,包含射擊、擊劍、游泳、馬術(shù)和越野跑五項(xiàng)運(yùn)動(dòng).已知甲、乙、丙共三人參加“現(xiàn)代五項(xiàng)”.規(guī)定每一項(xiàng)運(yùn)動(dòng)的前三名得分都分別為,,),選手最終得分為各項(xiàng)得分之和.已知甲最終得22分,乙和丙最終各得9分,且乙的馬術(shù)比賽獲得了第一名,則游泳比賽的第三名是

A. B. C. D. 乙和丙都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=ex(其中e為自然對(duì)數(shù)的底數(shù)),gx= x+mm,nR).

1)若Tx=fxgx),m=1,求Tx)在[0,1]上的最大值;

2)若m=nN*,求使fx)的圖象恒在gx)圖象上方的最大正整數(shù)n[注意:7e2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2ax+b在x=1處有極值2.求函數(shù)f(x)=x2﹣2ax+b在閉區(qū)間[0,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a∈R,函數(shù)f(x)=(﹣x2+ax)ex(x∈R,e為自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)在(﹣1,1)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次小型抽獎(jiǎng)活動(dòng)中,抽獎(jiǎng)規(guī)則如下:一個(gè)不透明的口袋中共有6個(gè)大小相同的球,它們是1個(gè)紅球,1個(gè)黃球,和4個(gè)白球,從中抽到紅球中50元,抽到黃球中10元,抽到白球不中獎(jiǎng).某人從中一次性抽出兩球,求:
(1)該人中獎(jiǎng)的概率;
(2)該人獲得的總獎(jiǎng)金X(元)的分布列和均值E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)幾何體的三視圖及尺寸如圖所示,則該幾何體的外接球半徑為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案