10.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0的左、右焦點分別為F1、F2,以F1F2為直徑的圓被直線$\frac{x}{a}$+$\frac{y}$=1截得的弦長為$\sqrt{6}$a,則雙曲線的離心率為(  )
A.3B.2C.$\sqrt{3}$D.$\sqrt{2}$

分析 求出圓心到直線的距離,利用以F1F2為直徑的圓被直線$\frac{x}{a}$+$\frac{y}$=1截得的弦長為$\sqrt{6}$a,求出a,c的關(guān)系,即可求出雙曲線的離心率.

解答 解:由題意,圓心到直線的距離為d=$\frac{1}{\sqrt{\frac{1}{{a}^{2}}+\frac{1}{^{2}}}}$=$\frac{ab}{c}$,
∵以F1F2為直徑的圓被直線$\frac{x}{a}$+$\frac{y}$=1截得的弦長為$\sqrt{6}$a,
∴2$\sqrt{{c}^{2}-\frac{{a}^{2}^{2}}{{c}^{2}}}$=$\sqrt{6}$a,
∴2(c4-a2b2)=3a2c2,
∴2c4-2a2(c2-a2)=3a2c2,
∴2e4-5e2+2=0,
∵e>1,
∴e=$\sqrt{2}$.
故選:D.

點評 熟練掌握雙曲線的性質(zhì)和圓中弦長的計算、離心率計算公式是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.△ABC中,角A、B、C所對額定邊分別為a,b,c,且b<c;
(Ⅰ)若a=c•cosB,求角C;
(Ⅱ)若cosA=sin(B-C),求角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在極坐標(biāo)系中,圓C的方程為ρ=2$\sqrt{2}sin(θ+\frac{π}{4})$,以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=t-{1_{\;}}}\\{y=2t-1}\end{array}}$(t為參數(shù)),則圓心C到直線l距離為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知△ABC的頂點A(4,1),AB邊上的中線CM所在的直線方程為2x-y-5=0,AC邊上的高BH所在直線為x-2y-5=0.求:
(1)頂點C的坐標(biāo);
(2)直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)數(shù)列{an}的前n項和為Sn,且a1=1,Sn=$\frac{1}{2}$anan+1
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=an•2n-1,設(shè)An=$\frac{_{3}}{_{1}_{2}}$+$\frac{_{4}}{_{2}_{3}}$+…+$\frac{_{n+2}}{_{n}_{n+1}}$,求An

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且a,b,c成等比數(shù)列,若sinB=$\frac{5}{13}$,cosB=$\frac{12}{ac}$,則a+c的值為3$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知直線l的極坐標(biāo)方程為ρsinθ-2ρcosθ+3=0,則直線l的斜率是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)函數(shù)f(x)=$\frac{x}{x+2}$(x>0),觀察:f1(x)=f(x)=$\frac{x}{x+2}$,f2(x)=f(f1(x))=$\frac{x}{3x+4}$,f3(x)=f(f2(x))=$\frac{x}{7x+8}$,….
根據(jù)以上事實,由此歸納推理可得:當(dāng)n∈N*且n≥2時,fn(x)=f(fn-1(x))=$\frac{x}{({2}^{n}-1)x+{2}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=(x+a)(bx+2a),(a,b∈R),則“a=0”是“f(x)為偶函數(shù)”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案