【題目】已知函數(shù)的定義域?yàn)?/span>,當(dāng)時(shí),,且對(duì)任意的實(shí)數(shù),等式恒成立,若數(shù)列滿足,且,則的值為(

A.4037B.4038C.4027D.4028

【答案】A

【解析】

,對(duì)任意的實(shí)數(shù),等式恒成立,且,得到an+1an+2,由等差數(shù)列的定義求得結(jié)果.

,∴fan+1f(﹣2an)=1,∵fxfy)=fx+y)恒成立,

∴令x=﹣1,y0,則f(﹣1f0)=f(﹣1),∵當(dāng)x0時(shí),fx)>1,∴f(﹣1)≠0,

f0)=1,則fan+1f(﹣2an)=1,等價(jià)為fan+1f(﹣2an)=f0),

fan+12an)=f0),則an+12an0,∴an+1an2.

∴數(shù)列{an}是以1為首項(xiàng),以2為公差的等差數(shù)列,首項(xiàng)a1f0)=1,

an1+2n1)=2n1,2×201914037.

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對(duì)本市小學(xué)生課業(yè)負(fù)擔(dān)情況進(jìn)行了調(diào)查,設(shè)平均每人每天做作業(yè)的時(shí)間為分鐘,有1200名小學(xué)生參加了此項(xiàng)調(diào)查,調(diào)查所得到的數(shù)據(jù)用程序框圖處理(如圖),若輸出的結(jié)果是840,若用樣本頻率估計(jì)概率,則平均每天做作業(yè)的時(shí)間在0~60分鐘內(nèi)的學(xué)生的概率是( )

A. 0.32 B. 0.36 C. 0.7 D. 0.84

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合的元素個(gè)數(shù)為個(gè)且元素為正整數(shù),將集合分成元素個(gè)數(shù)相同且兩兩沒(méi)有公共元素的三個(gè)集合,即,,,其中,,若集合中的元素滿足,,則稱(chēng)集合完美集合例如:“完美集合,此時(shí).若集合,為完美集合”,的所有可能取值之和為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),為奇函數(shù).

1)求的值;

2)若對(duì)任意恒有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的極坐標(biāo)方程為,傾斜角為的直線過(guò)點(diǎn).

(1)求曲線的直角坐標(biāo)方程和直線的參數(shù)方程;

(2)設(shè),是過(guò)點(diǎn)且關(guān)于直線對(duì)稱(chēng)的兩條直線,交于兩點(diǎn),交于, 兩點(diǎn). 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 處取到極值2.

(1)求的解析式;

(2)若a<e,函數(shù),若對(duì)任意的,總存在為自然對(duì)數(shù)的底數(shù)),使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|1≤x≤3},B={x|x>2}.

Ⅰ)分別求A∩B,(RBA;

Ⅱ)已知集合C={x|1<x<a},若CA,求實(shí)數(shù)a的取值集合

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)fx)=3x

(1)若fx)=8,求x的值;

(2)對(duì)于任意的x∈[0,2],[fx)-3]3x+13-m≥0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 ,直線 為參數(shù)).

(1)寫(xiě)出橢圓的參數(shù)方程及直線的普通方程;

(2)設(shè),若橢圓上的點(diǎn)滿足到點(diǎn)的距離與其到直線的距離相等,求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案