函數(shù)f(x)的導(dǎo)函數(shù)是f′(x),若f(x)>f′(x),則下列結(jié)論成立的是( 。
A、ef(0)=f(1)
B、ef(0)<f(1)
C、ef(0)>f(1)
D、ef(0)≤f(1)
考點:函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)條件構(gòu)造函數(shù)F(x)=
f(x)
ex
,求函數(shù)的導(dǎo)數(shù),利用函數(shù)的單調(diào)性即可得到結(jié)論.
解答: 解:設(shè)F(x)=
f(x)
ex

則F'(x)=
f′(x)ex-f(x)ex
[ex]2
=
f′(x)-f(x)
ex
,
∵f(x)>f′(x),
∴F'(x)<0,即函數(shù)F(x)在定義域上單調(diào)遞減.
∵1>0,
∴F(1)<F(0),
f(1)
e
f(0)
e0
=f(0)
,
∴f(1)<ef(0),
故選:C.
點評:本題主要考查函數(shù)單調(diào)性的判斷和應(yīng)用,根據(jù)條件構(gòu)造函數(shù)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,下列結(jié)論中錯誤的是(  )
 
A、
AB
=
DC
B、
AD
+
AB
=
AC
C、
BC
+
DC
=
CA
D、
AD
+
CB
=
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足:f(x)=-f(2-x),當(dāng)x>1時,f(x)單調(diào)遞減,如果x1+x2<2,且(x1-1)(x2-1)<0,那么f(x1)+f(x2)的值( 。
A、恒大于0B、恒小于0
C、可能為0D、可正可負(fù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
i3(1+i)2
1-i
-i等于( 。
A、1B、-1C、iD、-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線a,b異面直線,直線a和平面α平行,則直線b和平面α的位置關(guān)系是(  )
A、b?αB、b∥α
C、b與α相交D、以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

作曲線y=e2x在點(0,1)處的切線,則切線的斜率是( 。
A、1B、2
C、eD、e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=x+2與橢圓
x2
m
+
y2
3
=1有兩個公共點,則m的取值范圍是( 。
A、m>4
B、m>1且m≠3
C、m>3
D、m>0且m≠3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-2,1),
b
=(4,k).若
a
b
,則實數(shù)k的值是(  )
A、k=2B、k=-2
C、k=8D、k=-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
3-x-a,x≤0
f(x-1),x>0
,若f(x)=x有且僅有三解,則a的取值范圍是( 。
A、[0,2]
B、(-∞,2)
C、(-∞,1]
D、[0,+∞)

查看答案和解析>>

同步練習(xí)冊答案