已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)A,△AF1F2為正三角形,以線段F1F2為直徑的圓與直線y═
3
x-4相切.

(1)求橢圓C的方程和離心率.

(2)若點(diǎn)P為焦點(diǎn)F1關(guān)于直線x=-
5
2
的對(duì)稱點(diǎn),動(dòng)點(diǎn)M滿足
|MF1|
|MF2|
=e,問是否存在一定點(diǎn)T,使得動(dòng)點(diǎn)M到定點(diǎn)T的距離為定值?若存在,求出定點(diǎn)T的坐標(biāo)及此定值,若不存在,請(qǐng)說明理由.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:圓錐曲線的定義、性質(zhì)與方程
分析:(1)由已知條件推導(dǎo)出c=d=
|-4|
3+1
=2,a=2c=4,由此能求出橢圓C的方程和離心率.
(2)由已知條件推導(dǎo)出P(-3,0),設(shè)M(x,y),由推導(dǎo)出
(x+2)2+y2
(x+3)2+y2
=
1
2
,由此能求出定點(diǎn)T的坐標(biāo)和定值.
解答: 解:(1)∵橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)A,
以線段F1F2為直徑的圓與直線y=
3
x-4相切,
∴c=d=
|-4|
3+1
=2
∵△AF1F2為正三角形,
∴a=2c=4,∴b2=42-22=12,
∴橢圓C的方程為
x2
16
+
y2
12
=1
,
離心率e=
c
a
=
1
2

(2)∵點(diǎn)P為焦點(diǎn)F1(-2,0)關(guān)于直線x=-
5
2
的對(duì)稱點(diǎn),
∴P(-3,0),
設(shè)M(x,y),∵動(dòng)點(diǎn)M滿足
|MF1|
|MF2|
=e=
1
2

(x+2)2+y2
(x+3)2+y2
=
1
2
,整理,得(x+
5
3
2+y2=
4
9
,
∴定點(diǎn)T的坐標(biāo)為(-
5
3
,0),
使得動(dòng)點(diǎn)M到定點(diǎn)T的距離為定值
2
3
點(diǎn)評(píng):本題考查橢圓方程和離心率的求法,考查滿足條件的點(diǎn)的判斷,解題時(shí)要注意數(shù)形結(jié)合思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log4x ,x>0
3x ,   x≤0
,則f[f(
1
4
)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下命題:
|
a
|+|
b
|=|
a
+
b
|
a
,
b
共線的充要條件;
②空間任意一點(diǎn)O與不共線三點(diǎn)A,B,C滿足
OP
=2
OA
+3
OB
-4
OC
,則P,A,B,C四點(diǎn)共面;
③若兩平面的法向量不垂直,則這兩個(gè)平面一定不垂直.
其中正確的命題是( 。
A、②B、①②C、②③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲乙丙丁4人玩?zhèn)髑蛴螒颍智蛘邔⑶虻瓤赡艿膫鹘o其他3人,若球首先從甲傳出,經(jīng)過3次傳球.
(1)求球恰好回到甲手中的概率;
(2)設(shè)乙獲球(獲得其他游戲者傳的球)的次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+xsinx+cosx.
(1)求f(x)的最小值;
(2)若曲線y=f(x)在點(diǎn)(a,f(a))處與直線y=b相切,求a與b的值.
(3)若曲線y=f(x)與直線y=b 有兩個(gè)不同的交點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足
Sn
n
=3n-2

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
3
anan+1
,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn
m
20
對(duì)所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
a
x
-lnx,a>0.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若f(x)>x-x2在(1,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)(0,1),其長軸、焦距和短軸的長的平方依次成等差數(shù)列.直線l與x軸正半軸和y軸分別交于點(diǎn)Q、P,與橢圓分別交于點(diǎn)M、N,各點(diǎn)均不重合且滿足
PM
=λ1
MQ
,
PN
=λ2
NQ

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若λ12=-3,試證明:直線l過定點(diǎn)并求此定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點(diǎn)分別為F1、F2,實(shí)軸長為1,P是雙曲線右支上的一點(diǎn),滿足|PF1|=3,M是y軸上的一點(diǎn),則
PM
•(
PF1
-
PF2
)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案