分析 由條件利用函數(shù)y=Atan(ωx+φ)的周期為$\frac{π}{ω}$,得出結(jié)論.
解答 解:函數(shù)y=tan(2x+$\frac{π}{4}$)的周期是$\frac{π}{2}$,函數(shù)y=tan(-2x+$\frac{π}{4}$)=-tan(2x-)$\frac{π}{4}$的周期是$\frac{π}{2}$,
故答案為:$\frac{π}{2}$;$\frac{π}{2}$.
點(diǎn)評 本題主要考查函數(shù)y=Atan(ωx+φ)的周期性,利用了函數(shù)y=Atan(ωx+φ)的周期為$\frac{π}{ω}$,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<θ<$\frac{3π}{4}$ | B. | 0<θ<$\frac{π}{4}$或$\frac{3π}{4}$<θ<π | C. | $\frac{3π}{4}$<θ<π | D. | $\frac{3π}{4}$<θ<$\frac{5π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b>a>c | B. | a>b>c | C. | a>c>b | D. | c>a>b |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com