3.已知雙曲線E1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與拋物線E2:y2=2px的焦點(diǎn)都在直線l0:2x-y-4=0上,雙曲線E1的漸近線方程為x$±\sqrt{3}$y=0.
(1)求雙曲線E1與拋物線E2的方程;
(2)若直線l1經(jīng)過拋物線E2的焦點(diǎn)F交拋物線E1于A,B兩點(diǎn),$\overrightarrow{AF}$=3$\overrightarrow{FB}$,求直線l1的方程.

分析 (1)確定焦點(diǎn)坐標(biāo),可得拋物線的方程,結(jié)合雙曲線E1的漸近線方程為x$±\sqrt{3}$y=0,可得雙曲線的方程;
(2)設(shè)出直線AB的方程,聯(lián)立直線和拋物線方程,求出A,B的橫坐標(biāo),由$\overrightarrow{AF}$=3$\overrightarrow{FB}$得到x1=3x2+2,代入A,B的坐標(biāo)得答案.

解答 解:(1)令y=0,可得x=2,∴焦點(diǎn)為(2,0),
∴$\frac{p}{2}$=2,c=2,
∴拋物線E2的方程為y2=8x,
∵雙曲線E1的漸近線方程為x$±\sqrt{3}$y=0,
∴$\frac{a}$=$\frac{\sqrt{3}}{3}$,
∵a2+b2=4,
∴a=$\sqrt{3}$,b=1,
∴求雙曲線E1的方程是$\frac{{x}^{2}}{3}$-y2=1;
(2)設(shè)AB所在直線方程為y=k(x-2),
聯(lián)立拋物線方程,得k2x2-(4k2+8)x+4k2=0.
設(shè)A(x1,y1),B(x2,y2),
解方程得:x1=$\frac{2{k}^{2}+4+4\sqrt{{k}^{2}+1}}{{k}^{2}}$,x2=$\frac{2{k}^{2}+4-4\sqrt{{k}^{2}+1}}{{k}^{2}}$.
再由$\overrightarrow{AF}$=3$\overrightarrow{FB}$,得x1+1=3(x2+1),即x1=3x2+2,
∴$\frac{2{k}^{2}+4+4\sqrt{{k}^{2}+1}}{{k}^{2}}$=3•$\frac{2{k}^{2}+4-4\sqrt{{k}^{2}+1}}{{k}^{2}}$+2,
解得:k=±$\frac{\sqrt{20+8\sqrt{13}}}{3}$.
∴直線L的方程為y=$\frac{\sqrt{20+8\sqrt{13}}}{3}$(x-2)或y=-$\frac{\sqrt{20+8\sqrt{13}}}{3}$(x-2).

點(diǎn)評(píng) 本題考查了雙曲線、拋物線的方程與幾何性質(zhì),考查了直線與拋物線的位置關(guān)系,考查了學(xué)生的計(jì)算能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列運(yùn)用基本不等式求最值,使用正確的個(gè)數(shù)是( 。
①已知ab≠0,由$\frac{a}$+$\frac{a}$≥2$\sqrt{\frac{a}•\frac{a}}$=2,求得$\frac{a}$+$\frac{a}$的最小值為2
②由y=$\sqrt{{x}^{2}+4}$+$\frac{1}{\sqrt{{x}^{2}+4}}$≥2,求得y=$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$的最小值為2
③已知x>1,由y=x+$\frac{2}{x-1}$≥2$\sqrt{\frac{2x}{x-1}}$,當(dāng)且僅當(dāng)x=$\frac{2}{x-1}$即x=2時(shí)等號(hào)成立,把x=2代入2$\sqrt{\frac{2x}{x-1}}$得y的最小值為4.
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,作$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{a}$+$\overrightarrow$,則∠AOB=30°.(用角度表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=tan2x-2tanx,x$∈[0,\frac{π}{2})$的最小值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.從0,1,…,9中選出三個(gè)不同數(shù)字組成四位數(shù)(其中的一個(gè)數(shù)字可以出現(xiàn)兩次),如5224.則這樣的四位數(shù)共有3888個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)=$\sqrt{2}$sin(ωx+φ+$\frac{π}{4}$)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期為π,且f(-x)=f(x),則( 。
A.f(x)在(0,$\frac{π}{2}$)單調(diào)遞減B.f(x)在($\frac{π}{4}$,$\frac{3π}{4}$)單調(diào)遞減
C.f(x)在(0,$\frac{π}{2}$)單調(diào)遞增D.f(x)在($\frac{π}{4}$,$\frac{3π}{4}$)單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)=-$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)+2,求:
(1)f(x)的最小正周期及對(duì)稱軸方程;
(2)f(x)的單調(diào)遞增區(qū)間;
(3)若方程f(x)-m+1=0在x∈[0,$\frac{π}{2}$]上有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{8,(x=1)}\\{f(x-1)+3,(x≥2,x∈{N}^{*})}\end{array}\right.$,求f(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=4x5+3x3+2x+1,則f(log23)+f(lo${g}_{\frac{1}{2}}3$)=( 。
A.2B.1C.0D.-1

查看答案和解析>>

同步練習(xí)冊(cè)答案