下例等式中,對(duì)任意實(shí)數(shù)α,β均滿足的是(  )
A、tan(α+β)=
tanα+tanβ
1-tanαtanβ
B、tan(α-β)=
tanα-tanβ
1+tanαtanβ
C、cos2α=2cos2α-1
D、sin2α-2sin2α=1
考點(diǎn):三角函數(shù)的化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:根據(jù)兩角和差的正切公式以及余弦和正弦的倍角公式即可進(jìn)行判斷.
解答: 解:A.當(dāng)α=
π
2
+kπ,β=
π
2
+kπ
,時(shí)正切公式不成立.
B.當(dāng)α=
π
2
+kπ,β=
π
2
+kπ
,時(shí)正切公式不成立.
C.cos2α=2cos2α-1恒成立.
D.當(dāng)α=0時(shí),sin2α-2sin2α=1不成立.
故選:C.
點(diǎn)評(píng):本題主要考查三角函數(shù)公式成立的條件,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a•10a=1004,b•lgb=1004,則a•b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記Z=(x-y)2+(
2
x
+
y
2
2(x≠0,x,y∈R),則Z的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是R上的偶函數(shù),且在[0,+∞)上為增函數(shù),則( 。
A、f(-π)>f(3)>f(-2)
B、f(-π)>f(-2)>f(3)
C、f(-π)<f(3)<f(-2)
D、f(-π)<f(-2)<f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2ln|x|與g(x)=sin(x+ψ)(ω>0)有兩個(gè)公共點(diǎn),則在下列函數(shù)中滿足條件的周期最大的g(x)等于( 。
A、sin(2πx-
π
2
B、sin(
πx
2
-
π
2
C、sin(πx-
π
2
D、sin(πx+
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在{x|x∈R,x≠1}上的函數(shù)f(1-x)=-f(1+x),當(dāng)x>1時(shí),f(x)=(
1
2
)
x
,則函數(shù)g(x)=f(x)-
1
2
cosπ(x+
1
2
)(-3≤x≤5)的所有零點(diǎn)之和等于( 。
A、10B、8C、6D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓臺(tái)的上、下底面半徑分別是2、6,且側(cè)面面積等于兩底面面積之和.
(1)求該圓臺(tái)母線的長(zhǎng);
(2)求該圓臺(tái)的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿足f(2+x)+f(6-x)=0,將f(x)的圖象按
a
平移后得到g(x)=2+x+sin(x+1)圖象,求
a
的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,圓錐型量杯口徑為2R,高為h,求量杯母線上刻度V(容積)與液面深x的函數(shù)關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案