年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
圓O1:x2+y2-2x=0和圓O2:x2+y2-4y=0的位置關(guān)系是( )
A.相離 B.相交
C.外切 D.內(nèi)切
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
一個(gè)橢圓中心在原點(diǎn),焦點(diǎn)F1,F2在x軸上,P(2,)是橢圓上一點(diǎn),且|PF1|,|F1F2|,|PF2|成等差數(shù)列,則橢圓方程為( )
A.+=1 B.+=1
C.+=1 D.+=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,F1,F2分別是橢圓+=1(a>b>0)的左、右焦點(diǎn),頂點(diǎn)B的坐標(biāo)為(0,b),連接BF2并延長交橢圓于點(diǎn)A,過點(diǎn)A作x軸的垂線交橢圓于另一點(diǎn)C,連接F1C.
(1)若點(diǎn)C的坐標(biāo)為,且BF2=,求橢圓的方程;
(2)若F1C⊥AB,求橢圓離心率e的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
雙曲線-=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F2,漸近線分別為l1,l2,點(diǎn)P在第一象限內(nèi)且在l1上,若l2⊥PF1,l2∥PF2,則該雙曲線的離心率為( )
A. B.2
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線C:-=1(a>0,b>0)的離心率為2,A,B為其左,右頂點(diǎn),點(diǎn)P為雙曲線C在第一象限的任意一點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),若PA,PB,PO的斜率為k1,k2,k3,則m=k1k2k3的取值范圍為( )
A.(0,3) B.(0,)
C. D.(0,8)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,曲線C由上半橢圓C1:+=1(a>b>0,y≥0)和部分拋物線C2:y=-x2+1(y≤0)連接而成,C1與C2的公共點(diǎn)為A,B,其中C1的離心率為.
(1)求a,b的值;
(2)過點(diǎn)B的直線l與C1,C2分別交于點(diǎn)P,Q(均異于點(diǎn)A,B),若AP⊥AQ,求直線l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com