設(shè)函數(shù)
(I)若當(dāng)時,取得極值,求的值,并討論的單調(diào)性;
(II)若存在極值,求的取值范圍,并證明所有極值之和大于
解(Ⅰ),依題意有,故.
從而.的定義域為,
當(dāng)時,;當(dāng)時,; 當(dāng)時,.
從而,分別在區(qū)間單調(diào)增加,在區(qū)間單調(diào)減少.
(Ⅱ)的定義域為,.
方程的判別式.
(ⅰ)若,即,在的定義域內(nèi),故無極值.
(ⅱ)若,則或.若,,.
當(dāng)時,,當(dāng)時,,所以無極值.
若,,,也無極值.
(ⅲ)若,即或,則有兩個不同的實根,.
當(dāng)時,,從而有的定義域內(nèi)沒有零點,故無極值.
當(dāng)時,,,在的定義域內(nèi)有兩個不同的零點,由根值判別方法知在取得極值.
綜上,存在極值時,的取值范圍為.
的極值之和為
科目:高中數(shù)學(xué) 來源: 題型:
(07年寧夏、 海南卷理)(12分)
設(shè)函數(shù)
(I)若當(dāng)時,取得極值,求的值,并討論的單調(diào)性;
(II)若存在極值,求的取值范圍,并證明所有極值之和大于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(07年寧夏、 海南卷理)(12分)
設(shè)函數(shù)
(I)若當(dāng)時,取得極值,求的值,并討論的單調(diào)性;
(II)若存在極值,求的取值范圍,并證明所有極值之和大于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北夷陵中學(xué)高三第一次階段性考試數(shù)學(xué)卷 題型:解答題
(本小題滿分13分)
設(shè)函數(shù)
(I)若當(dāng)時,取得極值,求的值,并討論的單調(diào)性;
(II)若存在極值,求的取值范圍,并證明所有極值之和大于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北夷陵中學(xué)高三第一次階段性考試數(shù)學(xué)卷 題型:解答題
(本小題滿分13分)
設(shè)函數(shù)
(I)若當(dāng)時,取得極值,求的值,并討論的單調(diào)性;
(II)若存在極值,求的取值范圍,并證明所有極值之和大于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(I)若當(dāng)時,取得極值,求的值,并討論的單調(diào)性;
(II)若存在極值,求的取值范圍,并證明所有極值之和大于.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com