已知點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影是M,點(diǎn)A的坐標(biāo)是,則的最小值是
A.B.4 C.D.5
C

試題分析:拋物線焦點(diǎn),準(zhǔn)線,依據(jù)拋物線定義可知,所以當(dāng)三點(diǎn)共線時(shí),距離和最小,此時(shí)最小距離為
點(diǎn)評(píng):利用拋物線定義:拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離可實(shí)現(xiàn)線段的轉(zhuǎn)化
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正方形ABCD 對(duì)角線AC所在直線方程為 .拋物線過B,D兩點(diǎn)
(1)若正方形中心M為(2,2)時(shí),求點(diǎn)N(b,c)的軌跡方程。
(2)求證方程的兩實(shí)根,滿足

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的左右焦點(diǎn)為,弦過點(diǎn),若△的內(nèi)切圓周長(zhǎng)為,點(diǎn)坐標(biāo)分別為,則            。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

焦點(diǎn)為(0,6)且與雙曲線有相同的漸近線的雙曲線方程是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的上、下頂點(diǎn)分別為、,左、右焦點(diǎn)分別為、,若四邊形是正方形,則此橢圓的離心率等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn),過F1的直線交橢圓于A,B兩點(diǎn),若|F2A|+|F2B|=12,則|AB|=               。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)
給定橢圓C:,稱圓心在原點(diǎn)O、半徑是的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個(gè)焦點(diǎn)為,其短軸的一個(gè)端點(diǎn)到點(diǎn)的距離為
(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)若點(diǎn)是橢圓C的“準(zhǔn)圓”與軸正半軸的交點(diǎn),是橢圓C上的兩相異點(diǎn),且軸,求的取值范圍;
(3)在橢圓C的“準(zhǔn)圓”上任取一點(diǎn),過點(diǎn)作直線,使得與橢圓C都只有一個(gè)交點(diǎn),試判斷是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,是拋物線(為正常數(shù))上的兩個(gè)動(dòng)點(diǎn),直線AB與x軸交于點(diǎn)P,與y軸交于點(diǎn)Q,且

(Ⅰ)求證:直線AB過拋物線C的焦點(diǎn);
(Ⅱ)是否存在直線AB,使得若存在,求出直線AB的方程;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓方程為),F(-c,0)和F(c,0)分別是橢圓的左 右焦點(diǎn).
①若P是橢圓上的動(dòng)點(diǎn),延長(zhǎng)到M,使=,則M的軌跡是圓;
②若P是橢圓上的動(dòng)點(diǎn),則
③以焦點(diǎn)半徑為直徑的圓必與以長(zhǎng)軸為直徑的圓內(nèi)切;
④若在橢圓上,則過的橢圓的切線方程是;
⑤點(diǎn)P為橢圓上任意一點(diǎn),則橢圓的焦點(diǎn)角形的面積為.
以上說法中,正確的有                

查看答案和解析>>

同步練習(xí)冊(cè)答案