分析 設(shè)P$(7\sqrt{2}cosθ,7sinθ)$(θ∈[0,2π)).可得|PA|=$\sqrt{(7\sqrt{2}cosθ)^{2}+(7sinθ-5)^{2}}$=$\sqrt{-49(sinθ+\frac{5}{7})^{2}+148}$,利用二次函數(shù)與三角函數(shù)的單調(diào)性即可得出.
解答 解:設(shè)P$(7\sqrt{2}cosθ,7sinθ)$(θ∈[0,2π)).
則|PA|=$\sqrt{(7\sqrt{2}cosθ)^{2}+(7sinθ-5)^{2}}$=$\sqrt{-49si{n}^{2}θ-70sinθ+123}$=$\sqrt{-49(sinθ+\frac{5}{7})^{2}+148}$≤2$\sqrt{37}$,當(dāng)sinθ=-$\frac{5}{7}$時(shí)取等號(hào),
∴$cosθ=±\frac{2\sqrt{6}}{7}$.
∴P$(±4\sqrt{3},-5)$.
故答案分別為:$(±4\sqrt{3},-5)$;2$\sqrt{37}$.
點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及參數(shù)方程、二次函數(shù)與三角函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 平行 | B. | 垂直 | C. | 重合 | D. | 相交但不垂直 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{8\sqrt{3}}{3}$ | C. | $\frac{4\sqrt{3}}{3}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com