【題目】現(xiàn)有個(gè)小球,甲、乙兩位同學(xué)輪流且不放回抓球,每次最少抓1個(gè)球,最多抓3個(gè)球,規(guī)定誰抓到最后一個(gè)球誰贏. 如果甲先抓,那么下列推斷正確的是(

A. =4,則甲有必贏的策略 B. =6,則乙有必贏的策略

C. =9,則甲有必贏的策略 D. =11,則乙有必贏的策略

【答案】C

【解析】分析:如果甲先抓,若n=9,則甲有必贏的策略.必贏的策略為:甲先抓1球,當(dāng)乙抓1球時(shí),甲再抓3球;當(dāng)乙抓2球時(shí),甲再抓2球;當(dāng)乙抓3球時(shí),甲再抓1球;這時(shí)還有4個(gè)小球,輪到乙抓,按規(guī)則,乙最少抓1個(gè)球,最多抓3個(gè)球,無論如何抓,都會(huì)至少剩一個(gè)球,至多剩3個(gè)球;甲再抓走所有剩下的球,從而甲勝.

詳解:現(xiàn)有n個(gè)小球,甲、乙兩位同學(xué)輪流且不放回抓球

每次最少抓1個(gè)球,最多抓3個(gè)球,規(guī)定誰抓到最后一個(gè)球贏。

如果甲先抓,若n=9,則甲有必贏的策略。

必贏的策略為:

①甲先抓1球,

②當(dāng)乙抓1球時(shí),甲再抓3球;當(dāng)乙抓2球時(shí),甲再抓2球;當(dāng)乙抓3球時(shí),甲再抓1球;

③這時(shí)還有4個(gè)小球,輪到乙抓,按規(guī)則,乙最少抓1個(gè)球,最多抓3個(gè)球,

無論如何抓,都會(huì)至少剩一個(gè)球,至多剩3個(gè)球;

④甲再抓走所有剩下的球,從而甲勝.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《城市規(guī)劃管理意見》里面提出“新建住宅要推廣街區(qū)制,原則上不再建設(shè)封閉住宅小區(qū),已建成的封閉小區(qū)和單位大院要逐步打開”,這個(gè)消息在網(wǎng)上一石激起千層浪,各種說法不一而足.某網(wǎng)站為了解居民對(duì)“開放小區(qū)”認(rèn)同與否,從歲的人群中隨機(jī)抽取了人進(jìn)行問卷調(diào)查,并且做出了各個(gè)年齡段的頻率分布直方圖(部分)如圖所示,同時(shí)對(duì)人對(duì)這“開放小區(qū)”認(rèn)同情況進(jìn)行統(tǒng)計(jì)得到下表:

(Ⅰ)完成所給的頻率分布直方圖,并求的值;

(Ⅱ)如果從兩個(gè)年齡段中的“認(rèn)同”人群中,按分層抽樣的方法抽取6人參與座談會(huì),然后從這6人中隨機(jī)抽取2人作進(jìn)一步調(diào)查,求這2人的年齡都在內(nèi)的概率 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足 ,
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)如果s、t、r滿足|s﹣r|≤|t﹣r|,那么稱s比t更靠近r.當(dāng)a≥2且x≥1時(shí),試比較 和ex1+a哪個(gè)更靠近lnx,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下表為“五點(diǎn)法”繪制函數(shù)圖象時(shí)的五個(gè)關(guān)鍵點(diǎn)的坐標(biāo)(其中).

0

2

0

0

(Ⅰ) 請(qǐng)寫出函數(shù)的最小正周期和解析式;

(Ⅱ) 求函數(shù)的單調(diào)遞增區(qū)間;

(Ⅲ) 求函數(shù)在區(qū)間上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 公差d≠0,且S3+S5=50,a1 , a4 , a13成等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè) 是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù))是定義域?yàn)镽的奇函數(shù)

)求t的值;

)若函數(shù)的圖象過點(diǎn),是否存在正數(shù)m,使函數(shù)上的最大值為0,若存在求出m的值;若不存在請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是現(xiàn)代生活進(jìn)行信息交流的重要工具,據(jù)統(tǒng)計(jì),某公司名員工中的人使用微信,其中每天使用微信時(shí)間在一小時(shí)以內(nèi)的有人,其余每天使用微信在一小時(shí)以上.若將員工年齡分成青年(年齡小于歲)和中年(年齡不小于歲)兩個(gè)階段,使用微信的人中是青年人.若規(guī)定:每天使用微信時(shí)間在一小時(shí)以上為經(jīng)常使用微信,經(jīng)常使用微信的員工中是青年人.

)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,列出列聯(lián)表;


青年人

中年人

合計(jì)

經(jīng)常使用微信




不經(jīng)常使用微信




合計(jì)




)由列聯(lián)表中所得數(shù)據(jù),是否有的把握認(rèn)為經(jīng)常使用微信與年齡有關(guān)?

)采用分層抽樣的方法從經(jīng)常使用微信的人中抽取人,從這人中任選人,求事件 選出的人均是青年人的概率.

附:







查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是的⊙O直徑,CB與⊙O相切于B,E為線段CB上一點(diǎn),連接AC、AE分別交⊙O于D、G兩點(diǎn),連接DG交CB于點(diǎn)F. (Ⅰ)求證:C、D、G、E四點(diǎn)共圓.
(Ⅱ)若F為EB的三等分點(diǎn)且靠近E,EG=1,GA=3,求線段CE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確命題的個(gè)數(shù)是( )
(1)cosα≠0是 的充分必要條件
(2)f(x)=|sinx|+|cosx|,則f(x)最小正周期是π
(3)若將一組樣本數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上同一個(gè)常數(shù)后,則樣本的方差不變
(4)設(shè)隨機(jī)變量ζ服從正態(tài)分布N(0,1),若P(ζ>1)=p,則
A.4
B.3
C.2
D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案