3.下列四個(gè)等式中,
①sin(360°+300°)=sin300°;
②cos(180°-300°)=cos300°;
③sin(180°+300°)=-sin300°;
④cos(±300°)=cos300°,
其中正確的等式有3個(gè).

分析 直接利用誘導(dǎo)公式逐一核對(duì)四個(gè)命題得答案.

解答 解:①∵sin(360°+α)=sinα,∴sin(360°+300°)=sin300°正確;
②∵cos(180°-α)=-cosα,∴cos(180°-300°)=cos300°錯(cuò)誤;
③∵sin(180°+α)=-sinα,∴sin(180°+300°)=-sin300°正確;
④∵cos(α)=cosα,∴cos(±300°)=cos300°正確.
∴正確的等式個(gè)數(shù)共有3個(gè).
故答案為:3.

點(diǎn)評(píng) 本題考查利用誘導(dǎo)公式化簡(jiǎn)求值,關(guān)鍵是對(duì)誘導(dǎo)公式的記憶與運(yùn)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.用[x]表示不超過x的最大整數(shù),若函數(shù)y=kx-[x]恰好有三個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是 ( 。
A.($\frac{2}{3}$,2)B.($\frac{2}{3}$,$\frac{3}{4}$]∪[$\frac{3}{2}$,2)C.($\frac{2}{3}$,$\frac{4}{3}$]∪[$\frac{3}{2}$,2)D.($\frac{2}{3}$,1]∪[$\frac{4}{3}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{{x}^{2}-1}{{x}^{2}-3x+2},x≠1}\\{-2,x=1}\end{array}\right.$,在x=1處是否連續(xù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.若α為第二象限角,sin($\frac{π}{3}$+α)=$\frac{4}{5}$.求sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.(1)求值:lg5•lg400+(lg2${\;}^{\sqrt{2}}$)2;
(2)已知x=log23,求$\frac{{8}^{x}+{8}^{-x}}{{2}^{x}+{2}^{-x}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知$\overrightarrow{a}$=(2cosα,2sinα),$\overrightarrow$=(cosβ,sinβ),0<α<β<2π.
(1)若$\overrightarrow{c}$=(1,1),且$\overrightarrow{a}$∥$\overrightarrow{c}$,求α的值;
(2)若$\overrightarrow{a}$$•\overrightarrow$=1,cos(α+β)=$\frac{1}{3}$,求tanαtanβ的值;
(3)設(shè)$\overrightarrow{c}$=(2,0),若$\overrightarrow{a}$$+2\overrightarrow$=$\overrightarrow{c}$,求α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)f(x)的圖象是由兩條線段組成的折線段(如圖所示),則函數(shù)f(x)的表達(dá)式為f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x+1,-2≤x≤0}\\{2x+1,0≤x≤1}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.(1)已知cos(π+α)=-$\frac{1}{2}$,計(jì)算sin(2π-α)-tan(α-3π)的值.
(2)求$\frac{tan(2π-α)•cos(2π-α)•sin(-α+\frac{3π}{2})}{cos(-α+π)•sin(-π+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知a∈{x|($\frac{1}{2}$)x-x=0},則f(x)=loga(4+3x-x2)的單調(diào)減區(qū)間為(-1,$\frac{3}{2}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案