已知a>1,函數(shù)f(x)=求函數(shù)f(x)在x∈[1,2]時(shí)的最小值.

解:(1)當(dāng)1<a≤2時(shí),

x∈[1,a]時(shí),f′(x)≤0,                                                                                    ?

x∈(a,2]時(shí),f′(x)>0,                                                                                        ?

f(x)Min=f(a)=0.                                                                                                     ?

(2)當(dāng)a>2時(shí),∵x∈[1,2],?

xa.∴f(x)=x2·E-ax,f′(x)=(2x-ax2E-ax<0.                                                        ?

f(x)在x∈[1,2]時(shí)是減函數(shù).                                                                       ?

f(x)Min=f(2)=4E-2a.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,函數(shù)f(x)=x2(x-a),若f′(1)=1.
(1)求a的值并求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程y=g(x);
(2)設(shè)h(x)=f′(x)+g(x),求h(x)在[0,1]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,函數(shù)f(x)=x2+ax-2-lnx.
(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若a=1,且對(duì)于區(qū)間[
13
,1]
上任意兩個(gè)自變量x1,x2,都有|f(x1)-f(x2)|≤c,求實(shí)數(shù)c的取值范圍.
(參考數(shù)據(jù):ln3≈1.0986)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•山西模擬)已知a∈R,函數(shù)f(x)=x|x-a|.
(1)當(dāng)a>2時(shí),求函數(shù)y=f(x)在區(qū)間[1,2]上的最小值;
(2)若a=2時(shí),方程f(x)=m有三個(gè)不同的實(shí)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,函數(shù)f(x)=e
x2
-x+a,x∈R

(1)求f(x)的單調(diào)區(qū)間和極值;
(2)當(dāng)x∈(0,+∞)時(shí),不等式ex≥x2-2ax+1恒成立,求a的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案