6.已知點P是曲線y=$\frac{2}{3}$x3-2x2+3x(x∈R)上的一個動點,則以點P為切點,且切線斜率取最小值時的切線方程為3x-3y+2=0.

分析 設(shè)出切線的斜率k,得到k等于f′(x),根據(jù)二次函數(shù)求最小值的方法,求出k的最小值,然后把x=1代入到f(x)中求出f(1)的值即可得到切點坐標(biāo),根據(jù)斜率和切點坐標(biāo)寫出切線方程即可.

解答 解:設(shè)切線的斜率為k,
y=$\frac{2}{3}$x3-2x2+3x的導(dǎo)數(shù)為y′=2x2-4x+3=2(x-1)2+1,
則k=f′(x),當(dāng)x=1時,kmin=1.
把a=1代入到f(x)中得:f(x)=$\frac{2}{3}$x3-2x2+3x,
所以f(1)=$\frac{2}{3}$-2+3=$\frac{5}{3}$,即切點P坐標(biāo)為(1,$\frac{5}{3}$),
∴所求切線的方程為y-$\frac{5}{3}$=x-1,即3x-3y+2=0.
故答案為:3x-3y+2=0.

點評 本題考查導(dǎo)數(shù)的運用:求切線方程,主要考查導(dǎo)數(shù)的幾何意義,同時考查二次函數(shù)的最值求法,正確求導(dǎo)和運用點斜式方程是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若m,n是互不相同的空間直線,α,β是不重合的平面,則下列命題中為假命題的是( 。
A.若m∥α,m?β,α∩β=nα∩β=n則m∥n
B.若m⊥α,n⊥α,則m∥n
C.若m?α,n?α,m∥β,n∥β,m∩n=O,m∩n=O,則α∥β
D.若α⊥β,m?α,則m⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=ax2+1(a>0),g(x)=x2+bx,若y=f(x)與y=g(x)在它們的交點(1,c)處具有公共切線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C1過點(${\frac{{\sqrt{2}}}{2}$,1),且其右頂點與橢圓C2:x2+2y2=4的右焦點重合.
(Ⅰ)求橢圓C1的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)O為原點,若點A在橢圓C1上,點B在橢圓C2上,且OA⊥OB,求證:$\frac{1}{{{{|{{O}{A}}|}^2}}}$+$\frac{1}{{{{|{{O}{B}}|}^2}}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.汽車以每小時32公里速度行駛,到某處需要減速停車,設(shè)汽車以等減速度a=1.8米/秒2剎車,問從開始剎車到停車,汽車走了多少距離?(用微積分定理求)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知x∈R,那么$\sqrt{(x-2)^{2}+{2}^{2}}$+$\sqrt{(x-8)^{2}+{4}^{2}}$的最小值是6$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知b=3$\sqrt{2}$,sinB=$\frac{{\sqrt{6}}}{3}$,B-A=$\frac{π}{2}$.
(I)求a的值;
(Ⅱ)求cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.將函數(shù)y=sin2x的圖象經(jīng)過怎樣的變換,就能得到函數(shù)y=-sin(2x+$\frac{π}{5}$)的圖象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知i為虛數(shù)單位,a∈R,若a2-1+(a+1)i為純虛數(shù),則復(fù)數(shù)z=a+(a-2)i 在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案