(2013•湖北)已知a為常數(shù),函數(shù)f(x)=x(lnx-ax)有兩個(gè)極值點(diǎn)x1,x2(x1<x2)( 。
分析:先求出f(x),令f(x)=0,由題意可得lnx=2ax-1有兩個(gè)解x1,x2?函數(shù)g(x)=lnx+1-2ax有且只有兩個(gè)零點(diǎn)?g(x)在(0,+∞)上的唯一的極值不等于0.利用導(dǎo)數(shù)與函數(shù)極值的關(guān)系即可得出.
解答:解:∵f(x)=lnx-ax+x(
1
x
-a)
=lnx+1-2ax,(x>0)
令f(x)=0,由題意可得lnx=2ax-1有兩個(gè)解x1,x2?函數(shù)g(x)=lnx+1-2ax有且只有兩個(gè)零點(diǎn)?g(x)在(0,+∞)上的唯一的極值不等于0.
g(x)=
1
x
-2a=
1-2ax
x

①當(dāng)a≤0時(shí),g′(x)>0,f(x)單調(diào)遞增,因此g(x)=f(x)至多有一個(gè)零點(diǎn),不符合題意,應(yīng)舍去.
②當(dāng)a>0時(shí),令g(x)=0,解得x=
1
2a
,
∵x∈(0,
1
2a
)
,g(x)>0,函數(shù)g(x)單調(diào)遞增;x∈(
1
2a
,+∞)
時(shí),g(x)<0,函數(shù)g(x)單調(diào)遞減.
∴x=
1
2a
是函數(shù)g(x)的極大值點(diǎn),則g(
1
2a
)
>0,即ln
1
2a
+1-1=-ln(2a)
>0,∴l(xiāng)n(2a)<0,∴0<2a<1,即0<a<
1
2

0<x1
1
2a
x2
,f(x1)=lnx1+1-2ax1=0,f(x2)=lnx2+1-2ax2=0.
且f(x1)=x1(lnx1-ax1)=x1(2ax1-1-ax1)=x1(ax1-1)
1
2a
(
1
2a
×a-1)
=-
1
2a
<0,
f(x2)=x2(lnx2-ax2)=x2(ax2-1)>1×(a×
1
2a
-1)
=-
1
2
.(
1
2a
>1
).
故選D.
點(diǎn)評(píng):熟練掌握利用導(dǎo)數(shù)研究函數(shù)極值的方法是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖北)已知點(diǎn)A(-1,1),B(1,2),C(-2,-1),D(3,4),則向量
AB
CD
方向上的投影為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖北)已知函數(shù)f(x)=x(lnx-ax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖北)已知全集為R,集合A={x|(
1
2
)x≤1},B={x|x2-6x+8≤0}
,則A∩?RB=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖北)已知0<θ<
π
4
,則雙曲線(xiàn)C1
x2
sin2θ
-
y2
cos2θ
=1
與C2
y2
cos2θ
-
x2
sin2θ
=1
的( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案