分析 (1)把點(diǎn)C的坐標(biāo)代入函數(shù)解析式求出n的值即可得解;
(2)根據(jù)函數(shù)解析式求出拋物線的對稱軸以及點(diǎn)B的坐標(biāo),設(shè)對稱軸與x軸相交于點(diǎn)E,過點(diǎn)P作PF⊥對稱軸于F,根據(jù)同角的余角相等求出∠1=∠3,然后利用“角角邊”證明△BEM和△MFP全等,根據(jù)全等三角形對應(yīng)邊相等可得PF=ME,MF=BE,設(shè)PF=a,表示出點(diǎn)P的坐標(biāo),然后代入函數(shù)解析式,計算求出a的值即可得解.
解答 解:(1)∵拋物線y=(x-1)2+n與y軸交于C(0,-3),
∴1+n=-3,
∴n=-4,
∴拋物線的解析式為y=(x-1)2-4;
(2)拋物線y=(x-1)2-4的對稱軸為直線x=1,
令y=0,則(x-1)2-4=0,
解得x1=-1,x2=3,
∴點(diǎn)B的坐標(biāo)為(3,0),
設(shè)對稱軸與x軸相交于點(diǎn)E,過點(diǎn)P作PF⊥對稱軸于F,
則BE=3-1=2,
∵△BMP是等腰直角三角形,
∴MB=MP,∠BMP=90°,
∴∠1+∠2=90°,
又∵∠2+∠3=180°-90°=90°,
∴∠1=∠3,
在△BEM和△MFP中,$\left\{\begin{array}{l}{∠1=∠3}\\{∠BEM=∠MFP}\\{MB=MP}\end{array}$,
∴△BEM≌△MFP(AAS),
∴PF=ME,MF=BE,
設(shè)PF=a,①若點(diǎn)P在x軸的下方,則點(diǎn)P的坐標(biāo)為(a+1,-a-2),
∵點(diǎn)P在拋物線y=(x-1)2-4上,
∴(a+1-1)2-4=-a-2,
整理得,a2+a-2=0,
解得a1=1,a2=-2(舍去),
∴點(diǎn)P的坐標(biāo)為(2,-3).
②若點(diǎn)P在x軸的上方,則點(diǎn)P的坐標(biāo)為(a+1,a+2),
∵點(diǎn)P在拋物線y=(x-1)2-4上,
∴(a+1-1)2-1=a+2
整理得,a2-a-6=0
解得a1=-2,a2=3(舍去)
∴點(diǎn)P的坐標(biāo)為(4,5)
綜上所述,點(diǎn)P的坐標(biāo)為(2,-3)或(4,5).
點(diǎn)評 本題是二次函數(shù)綜合題型,主要利用了待定系數(shù)法求二次函數(shù)解析式,等腰直角三角形的性質(zhì),全等三角形的判定與性質(zhì),二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com