函數(shù)數(shù)學(xué)公式
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)將y=f(x)的圖象向左平移數(shù)學(xué)公式個(gè)單位,再將得到的圖象的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍(縱坐標(biāo)不變)后得到的y=g(x)的圖象.若y=g(x)(x>0)的圖象與直線數(shù)學(xué)公式交點(diǎn)的橫坐標(biāo)由小到大依次是x1,x2,…,xn,…,求數(shù)列{xn}的前2n項(xiàng)和S2n

解:(Ⅰ)函數(shù)=sin(2x-
≤2x-,可得≤x≤(k∈Z)
∴函數(shù)f(x)的單調(diào)遞減區(qū)間為[,](k∈Z);
(Ⅱ)y=f(x)的圖象向左平移個(gè)單位,得到y(tǒng)=sin2x,再將得到的圖象的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍(縱坐標(biāo)不變)后得到函數(shù)y=sinx的圖象,即g(x)=sinx,
若函數(shù)g(x)=sinx(x>0)的圖象與直線交點(diǎn)的橫坐標(biāo)由小到大依次是x1,x2,…,xn,
則由正弦曲線的對(duì)稱性,周期性得:=,=2π+,…,=2(n-1)π+,
所以x1+x2+…+x2n-1+x2n=(x1+x2)+(x3+x4)+…+(x2n-1+x2n)=3π+7π+11π+…+(4n-1)π=(2n2+n)π
分析:(Ⅰ)先根據(jù)二倍角公式以及兩角和的正弦公式對(duì)所給函數(shù)進(jìn)行整理,再結(jié)合正弦函數(shù)的單調(diào)性以及整體代入思想即可求出f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)先根據(jù)圖象的平移規(guī)律得到函數(shù)y=g(x)(x>0)的圖象;再結(jié)合正弦曲線的對(duì)稱性,周期性求出相鄰兩項(xiàng)的和及其規(guī)律,最后結(jié)合等差數(shù)列的求和公式即可得到結(jié)論.
點(diǎn)評(píng):本題是對(duì)三角函數(shù)單調(diào)性,對(duì)稱性,周期性以及公式的綜合考查,解決問(wèn)題的關(guān)鍵在于根據(jù)二倍角公式以及兩角和的正弦公式對(duì)所給函數(shù)進(jìn)行整理,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

①函數(shù)y=f(-x+2)與y=f(x-2)的圖象關(guān)于y軸對(duì)稱;
②用二分法求函數(shù)f(x)=lnx+x-2在(1,2)上零點(diǎn)的近似值,要求精確度0.1,則至少需要五次對(duì)對(duì)應(yīng)區(qū)間中點(diǎn)的函數(shù)值的計(jì)算;
③函數(shù)f(x)(其中f(x)恒不等于0)滿足 f(x)=f(x+1)f(x-1),則f(2013)f(0)=1;
④若f(1-x)=-f(x+1),則函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(2,0)對(duì)稱.
其中正確命題的序號(hào)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式
(1)求函數(shù)f(x)的定義域;
(2)求f(-1),f(12)的值;
(3)若f(4-a)-f(a-4)+數(shù)學(xué)公式數(shù)學(xué)公式=0,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年高一(上)第一次月考數(shù)學(xué)試卷(必修1)(解析版) 題型:解答題

已知函數(shù)
(1)求函數(shù)f(x)的定義域;
(2)求f(-1),f(12)的值;
(3)若f(4-a)-f(a-4)+=0,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年上海市嘉定區(qū)高考數(shù)學(xué)一模試卷(文理合卷)(解析版) 題型:解答題

已知向量,,函數(shù)
(1)求函數(shù)f(x)的最大值,并求當(dāng)f(x)取得最大值時(shí)x的集合;
(2)當(dāng)時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式
(1)求函數(shù)f(x)的定義域D,并判斷f(x)的奇偶性;
(2)如果當(dāng)x∈(t,a)時(shí),f(x)的值域是(-∞,1),求a與t的值;
(3)對(duì)任意的x1,x2∈D,是否存在x3∈D,使得f(x1)+f(x2)=f(x3),若存在,求出x3;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案