已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)取得最大值和最小值;
(2)設(shè)銳角的內(nèi)角A、B、C的對(duì)應(yīng)邊分別是,且,若向量與向量平行,求的值.
(1)時(shí),取得最大值0;時(shí),取得最小值.(2).

試題分析:(1)將解析式降次、化一得,由于,將看作一個(gè)整體結(jié)合正弦函數(shù)的圖象可得.由取得最大值0;由取得最小值.(2)因?yàn)橄蛄?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052447440720.png" style="vertical-align:middle;" />與向量平行,所以,又 .由余弦定理得,這樣根據(jù)角C的范圍便得邊的范圍;再據(jù)題設(shè),即可得的值.
(1)
          3分

   4分   
所以當(dāng)時(shí),取得最大值0;
當(dāng)時(shí),取得最小值      6分
(2)因?yàn)橄蛄?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052447440720.png" style="vertical-align:middle;" />與向量平行,所以
      .8分
由余弦定理
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052447923966.png" style="vertical-align:middle;" />,

又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052447549483.png" style="vertical-align:middle;" />,所以,經(jīng)檢驗(yàn)符合三角形要求                      12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知向量,),函數(shù),且圖象上一個(gè)最高點(diǎn)為,與最近的一個(gè)最低點(diǎn)的坐標(biāo)為.
(1)求函數(shù)的解析式;
(2)設(shè)為常數(shù),判斷方程在區(qū)間上的解的個(gè)數(shù);
(3)在銳角中,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若將函數(shù)的圖像向右平移個(gè)單位,所得圖像關(guān)于軸對(duì)稱,則的最小正值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=sinx+cosx(x∈R),函數(shù)y=f(x+φ)(|φ|≤)的圖象關(guān)于直線x=0對(duì)稱,則φ的值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)曲線y=sinx上任一點(diǎn)(x,y)處的切線斜率為g(x),則函數(shù)y=x2g(x)的部分圖象可以為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若向量,,則的最大值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)的一段圖象過點(diǎn)(0,1),如圖所示.(1)求函數(shù)的表達(dá)式;(2)將函數(shù)的圖象向右平移個(gè)單位,得函數(shù)的圖象,求的最大值,并求出此時(shí)自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

的振幅為          初相為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),而.
(1)若最大,求能取到的最小正數(shù)值.
(2)對(duì)(1)中的,若,求.

查看答案和解析>>

同步練習(xí)冊(cè)答案