【題目】定義:若函數(shù)的導(dǎo)函數(shù)是奇函數(shù),則稱函數(shù)是“雙奇函數(shù)”.函數(shù).
(1)若函數(shù)是“雙奇函數(shù)”,求實(shí)數(shù)的值;
(2)若時,討論函數(shù)的極值點(diǎn).
【答案】(1);(2)見解析.
【解析】
(1)先求出導(dǎo)函數(shù),再利用“雙奇函數(shù)”的定義即可求出的值;
(2)若時,對分情況討論,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值.從而分析出函數(shù)的極值點(diǎn).
(1),,
又函數(shù)是“雙奇函數(shù)”,
對任意且成立,
,
;
(2),且,
即
①當(dāng)時,,
令得,,(舍去),
若,即,則,所以在上單調(diào)遞增,所以在區(qū)間上不存在極值點(diǎn),
若,即,
當(dāng)時,;當(dāng),時,,
所以在上單調(diào)遞減,在,上單調(diào)遞增,所以函數(shù)在區(qū)間上存在一個極值點(diǎn),
②當(dāng)時,,
令,得,記△,
若△,即時,,所以在上單調(diào)遞減,函數(shù)在區(qū)間上不存在極值點(diǎn),
若△,即時,則由得,,,,
所以當(dāng)時,;當(dāng),時,;當(dāng),時,,
所以在區(qū)間上單調(diào)遞減,在區(qū)間,上單調(diào)遞增,在區(qū)間,上單調(diào)遞減,
所以當(dāng)時,函數(shù)存在兩個極值點(diǎn),
綜上所求,當(dāng)時,函數(shù)的極小值點(diǎn),極大值點(diǎn),
當(dāng)時,函數(shù)無極值點(diǎn),
當(dāng)時,函數(shù)的極小值點(diǎn),無極大值點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】因客流量臨時增大,某鞋店擬用一個高為50(即)的平面鏡自制一個豎直擺放的簡易鞋鏡,根據(jù)經(jīng)驗(yàn):一般顧客的眼睛到地面的距離為()在區(qū)間內(nèi),設(shè)支架高為(),,顧客可視的鏡像范圍為(如圖所示),記的長度為().
(I)當(dāng)時,試求關(guān)于的函數(shù)關(guān)系式和的最大值;
(II)當(dāng)顧客的鞋在鏡中的像滿足不等關(guān)系(不計(jì)鞋長)時,稱顧客可在鏡中看到自己的鞋,若使一般顧客都能在鏡中看到自己的鞋,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若函數(shù)有兩個零點(diǎn),求實(shí)數(shù)a的取值范圍
(2)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程是.
(1)寫出曲線的普通方程和的直角坐標(biāo)方程;
(2)求上的點(diǎn)到距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題;命題函數(shù)在區(qū)間上有零點(diǎn).
(1)當(dāng)時,若為真命題,求實(shí)數(shù)的取值范圍;
(2)若命題是命題的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且a1+a3=30,2S2是3S1和S3的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足,求數(shù)列{bn}前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).(其中常數(shù),是自然對數(shù)的底數(shù))
(1)若,求函數(shù)的極值點(diǎn)個數(shù);
(2)若函數(shù)在區(qū)間上不單調(diào),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中曲線的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程以及直線的直角坐標(biāo)方程;
(2)將曲線向左平移2個單位,再將曲線上的所有點(diǎn)的橫坐標(biāo)縮短為原來的,得到曲線,求曲線上的點(diǎn)到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,(且),函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖像在點(diǎn)處的切線的斜率為1,問:在什么范圍取值時,對于任意的,函數(shù)在區(qū)間上總存在極值?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com