【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程是

1)寫出曲線的普通方程和的直角坐標方程;

2)求上的點到距離的最小值.

【答案】1,;(2

【解析】

1)計算平方和,消參,并注意的范圍,可得曲線的普通方程,然后利用兩角和的正弦公式化簡,結(jié)合,可得的直角坐標方程.

(2)根據(jù)(1)的條件假設曲線上任意一點,使用點到直線的距離公式,然后使用輔助角公式,可得結(jié)果.

1)∵,

的普通方程為,

,

,

的直角坐標方程為

2)由(1)可知:

的參數(shù)方程為為參數(shù)),

則可設上任意一點坐標為,

上點到距離為,

其中

時,,

∴曲線上的點到距離的最小值為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

I)討論上的單調(diào)性;

(Ⅱ)若對任意的正整數(shù)n都有成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,A的坐標為(2,0),B是第一象限內(nèi)的一點,以C為圓心的圓經(jīng)過OAB三點,且圓C在點A,B處的切線相交于P,若P的坐標為(4,2),則直線PB的方程為_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知是橢圓的左、右焦點,橢圓的短軸長為,點是橢圓上的一點,過點軸的垂線交橢圓于另一點不過點),且的周長的最大值為8.

1)求橢圓的標準方程;

2)若過焦點,在橢圓上取兩點,連接,與軸的交點分別為,過點作橢圓的切線,當四邊形為菱形時,證明:直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)),.

1)當時,求函數(shù)的極小值;

2)若當時,關(guān)于的方程有且只有一個實數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若存在,對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:若函數(shù)的導函數(shù)是奇函數(shù),則稱函數(shù)是“雙奇函數(shù)”.函數(shù)

1)若函數(shù)是“雙奇函數(shù)”,求實數(shù)的值;

2)若時,討論函數(shù)的極值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了解高一新生的體能情況,在入學后不久,組織了一次體能測試,按成績分為優(yōu)秀、良好、一般、較差四個檔次.現(xiàn)隨機抽取120名學生的成績,其條形圖如下:

1)將優(yōu)秀、良好、一般歸為合格,較差歸為不合格,試根據(jù)條形圖完成下面的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為學生的成績與性別有關(guān).

合格

不合格

合計

男生

女生

合計

2)學校為了解學生以前參加課外活動的情況,利用分層抽樣的方法從120名學生中抽取24名學生參加一個座談會.

①座談會上抽取2名學生匯報以前參加課外活動的情況,求恰好抽到測試成績一個優(yōu)秀與一個較差的學生的概率;

②為全面提高學生的體能,學校專門安排專職教師對全校測試成績較差的學生在課外活動時進行專項訓練,通過一段時間的訓陳后,測試合格率達到了.若某班有4名學生參加這個專項訓陳,求訓練后測試合格人數(shù)ξ的分布列與數(shù)學期望.

附:K2,其中na+b+c+d

PK2k0

0.150

0.100

0.050

0.025

0.010

0.005

k0

2.072

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,,的中點.

(1)證明:平面;

(2)若點在棱上,且,求點到平面的距離.

查看答案和解析>>

同步練習冊答案