18.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$過點P(4,2),且它的漸近線與圓${({x-2\sqrt{2}})^2}+{y^2}=\frac{8}{3}$相切,則該雙曲線的方程為( 。
A.$\frac{x^2}{8}-\frac{y^2}{4}=1$B.$\frac{x^2}{16}-\frac{y^2}{8}=1$C.$\frac{x^2}{8}-\frac{y^2}{12}=1$D.$\frac{x^2}{12}-\frac{y^2}{12}=1$

分析 利用雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$過點P(4,2),且它的漸近線與圓${({x-2\sqrt{2}})^2}+{y^2}=\frac{8}{3}$相切,建立方程,求出a,b,即可求出雙曲線的方程.

解答 解:由題意,$\left\{\begin{array}{l}{\frac{16}{{a}^{2}}-\frac{4}{^{2}}=1}\\{\frac{|2\sqrt{2}b|}{\sqrt{^{2}+{a}^{2}}}=\sqrt{\frac{8}{3}}}\end{array}\right.$,
∴a=2$\sqrt{2}$,b=2,
∴雙曲線的方程為$\frac{{x}^{2}}{8}-\frac{{y}^{2}}{4}$=1,
故選A.

點評 本題考查了雙曲線的標準方程及簡單的幾何性質(zhì),直線與圓相切的條件,以及點到直線的距離公式,考查方程思想,化簡、計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.若對于定義在R上的函數(shù)f(x)當且僅當存在有限個非零自變量x,使得f(-x)=f(x),則稱f(x)為類偶函數(shù),若函數(shù)f(x)=x3+(a2-2a)x+a為類偶函數(shù),則f(a)的取值范圍為( 。
A.(0,2)B.(-∞,0]∪[2,+∞)C.[0,2]D.(-∞,0]∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.復(fù)數(shù)z=$\frac{2-i}{1+2i}$,則$\overline{z}$=( 。
A.iB.1+iC.-iD.1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx-ax+$\frac{b-1}{x}$,對任意的x∈(0,+∞),滿足f(x)+f($\frac{1}{x}$)=0,其中a、b為常數(shù)(e=2.71828…).
(Ⅰ)若f(x)的圖象在x=1處的切線經(jīng)過點(0,-5),求a、b的值;
(Ⅱ)已知0<a<1,求證:f($\frac{{a}^{2}}{3}$)>0;
(Ⅲ)當f(x)存在三個不同的零點時,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的焦點為F1,F(xiàn)2,P是橢圓C上一點,若PF1⊥PF2,$|{{F_1}{F_2}}|=2\sqrt{3}$,△PF1F2的面積為1.
(1)求橢圓C的方程;
(2))如果橢圓C上總存在關(guān)于直線y=x+m對稱的兩點A,B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在正方體ABCD-A1B1C1D1中,異面直線A1B與AD1所成角的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.sin$\frac{5π}{3}$的值為(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)y=f(x)的圖象如圖所示,則y=f(x)的解析式可能是( 。
A.y=2x-x2-xB.y=$\frac{{2}^{x}sinx}{4x+1}$C.y=(x2-2x)exD.y=$\frac{x}{lnx}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.函數(shù)y=ln|x|-x2的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案