參數(shù)方程為
x=-1+
3
t
y=2-t
(t為參數(shù))的直線的傾斜角(  )
A、
π
3
B、
π
6
C、
3
D、
6
考點(diǎn):直線的參數(shù)方程
專題:選作題,坐標(biāo)系和參數(shù)方程
分析:把參數(shù)方程化為普通方程,求出直線的斜率,據(jù)傾斜角和斜率的關(guān)系求出傾斜角的大小.
解答: 解:
x=-1+
3
t
y=2-t
(t為參數(shù))的普通方程為y=-
3
3
x+2-
3
3
,
斜率為-
3
3
,∴直線的傾斜角為
6

故選:D
點(diǎn)評:本題考查把參數(shù)方程化為普通方程的方法,直線的斜率和傾斜角的關(guān)系,斜率和傾斜角的求法.考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2m+1≤x≤3m-5},B={x|x<-1或x>16},
(1)若A∩B=∅,求實(shí)數(shù)m的取值范圍;
(2)若A⊆(A∩B),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:x2+y2=r2(b<r<a)與橢圓C2
x2
a2
+
y2
b2
=1,作直線l與C1、C2分別相切于點(diǎn)A、B(A、B位于第一象限),求|AB|最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式log
1
3
(-x)>-x-1的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
ex+e-x
2
,x≥0
ex-e-x
2
,x<0
,若方程f(x)=a恰有一實(shí)根,則a的取值范圍為( 。
A、(-∞,0]∪(1,+∞)
B、(-∞,0)∪[1,+∞)
C、(-∞,0)∪(1,+∞)
D、(-∞,0)∪(
1
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x,y)為圓C:x2+y2-4x+3=0上一點(diǎn),C為圓心.
(1)求x2+y2的取值范圍;
(2)求
y
x
的最大值;
(3)求
PC
PO
(O為坐標(biāo)原點(diǎn))的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(1,m),圓C:x2+y2=4.
(1)若過點(diǎn)M的圓C的切線只有一條,求m的值及切線方程;
(2)若過點(diǎn)M且在兩坐標(biāo)軸上的截距相等的直線被圓C截得的弦長為2
3
,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2
1
(
1
x
+
1
x2
+
1
x3
)dx
=( 。
A、ln 2+
7
8
B、ln 2-
7
2
C、ln 2-
5
8
D、ln 2-
17
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)證明:函數(shù)y=x3+x是R上的增函數(shù);
(2)討論函數(shù)f(x)=
a+x
x
(a>0)在定義域上的單調(diào)性并證明.

查看答案和解析>>

同步練習(xí)冊答案