7.若x>0,y>0,且(x-1)(y-1)≥2,則xy的取值范圍為[3+2$\sqrt{2}$,+∞).

分析 展開已知式子可得xy≥x+y+1,由基本不等式可得$\sqrt{xy}$的不等式,解不等式可得$\sqrt{xy}$的范圍,平方可得答案.

解答 解:∵x>0,y>0,且(x-1)(y-1)≥2,
∴xy-x-y+1≥2,即xy≥x+y+1,
由基本不等式可得xy≥x+y+1≥2$\sqrt{xy}$+1,
∴($\sqrt{xy}$)2-2$\sqrt{xy}$-1≥0,
解關(guān)于$\sqrt{xy}$的不等式可得$\sqrt{xy}$≥1+$\sqrt{2}$,或$\sqrt{xy}$≤1-$\sqrt{2}$(舍去)
∴xy≥(1+$\sqrt{2}$)2=3+2$\sqrt{2}$,
當(dāng)且僅當(dāng)x=y=1+$\sqrt{2}$時(shí)取等號(hào),
故答案為:[3+2$\sqrt{2}$,+∞)

點(diǎn)評(píng) 本題考查基本不等式,涉及一元二次不等式的解集,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.不等式(x+1)(2-x)>0的解集是( 。
A.(-∞,-2)∪(-1,+∞)B.(-2,1)C.(-∞,-1)∪(2,+∞)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{-x-1,x≤0}\\{\sqrt{x},x>0}\end{array}\right.$,若f(x0)>1.則x0的取值范圍是(-∞,-2)∪(1,∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若關(guān)于x的不等式組$\left\{\begin{array}{l}{a{x}^{2}-x-2≤0}\\{{x}^{2}-x≥a(1-x)}\end{array}\right.$的解集為R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=3x2-5x+2,求f(-$\sqrt{2}$),f(-a),f(a+3),f(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求兩點(diǎn)(-5,-1)、(-3,4)連線的垂直平分線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知f(x)=$\frac{1}{1+x}$(x∈R,且x≠-1),g(x)=x2+2(x∈R).
(1)求f(2),g(2)的值;
(2)求f(f(2)]的值;
(3)求f[g(x)]和g[f(x)]的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某校甲、乙兩個(gè)研究性學(xué)習(xí)小組各選1名代表匯報(bào)本組的研究成果,已知甲組有A1,A2,A3三名成員,乙組有B1,B2,B3三名成員,求A1被選中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案