【題目】古希臘亞歷山大時(shí)期的數(shù)學(xué)家帕普斯(Pappus,約300~約350)在《數(shù)學(xué)匯編》第3卷中記載著一個(gè)定理:“如果同一平面內(nèi)的一個(gè)閉合圖形的內(nèi)部與一條直線不相交,那么該閉合圖形圍繞這條直線旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體的體積等于閉合圖形面積乘以重心旋轉(zhuǎn)所得周長的積.”如圖,半圓的直徑,點(diǎn)是該半圓弧的中點(diǎn),半圓弧與直徑所圍成的半圓面(陰影部分不含邊界)的重心位于對(duì)稱軸上.若半圓面繞直徑所在直線旋轉(zhuǎn)一周,則所得到的旋轉(zhuǎn)體的體積為__________,___________________

【答案】

【解析】

首先根據(jù)題意,可以判斷出旋轉(zhuǎn)之后得到的幾何體是球,根據(jù)球的體積公式求得該球體的體積,再應(yīng)用題中所給的結(jié)論,得到關(guān)于OG的等量關(guān)系式,從而求得結(jié)果.

根據(jù)題意可知,該幾何體為半徑為2的球體,

所以該球的體積為,

設(shè),則根據(jù)題意可得

所以有,解得,

故答案是:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)市場調(diào)查發(fā)現(xiàn),某種產(chǎn)品在投放市場的30天中,其銷售價(jià)格(元)和時(shí)間(天)的關(guān)系如圖所示.

(1)求銷售價(jià)格(元)和時(shí)間(天)的函數(shù)關(guān)系式;

(2)若日銷售量(件)與時(shí)間(天)的函數(shù)關(guān)系式是 ,問該產(chǎn)品投放市場第幾天時(shí),日銷售額(元)最高,且最高為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù)滿足,當(dāng)時(shí),,則( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+a|+|x﹣2|
(1)當(dāng)a=﹣3時(shí),求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某商品的進(jìn)貨單價(jià)為1元/件,商戶甲往年以單價(jià)2元/件銷售該商品時(shí),年銷量為1萬件.今年擬下調(diào)銷售單價(jià)以提高銷量增加收益.據(jù)估算,若今年的實(shí)際銷售單價(jià)為元/件,則新增的年銷量(萬件).

(Ⅰ)寫出今年商戶甲的收益(單位:萬元)與的函數(shù)關(guān)系式;

(Ⅱ)商戶甲今年采取降低單價(jià)提高銷量的營銷策略,是否能獲得比往年更大的收益(即比往年收益更多)?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量與尺寸之間滿足關(guān)系式為大于0的常數(shù)),現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:

尺寸

38

48

58

68

78

88

質(zhì)量

16.8

18.8

20.7

22.4

24

25.5

(1)求關(guān)于的回歸方程;(提示:有線性相關(guān)關(guān)系)

(2)按照某項(xiàng)指標(biāo)測定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時(shí)為優(yōu)等品,現(xiàn)從抽取的6件合格產(chǎn)品再任選3件,求恰好取得兩件優(yōu)等品的概率.

參考數(shù)據(jù)及公式:

,,

對(duì)于樣本),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1,(a>b>0)的離心率為 ,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線x﹣y+ =0)且不垂直于x軸直線l橢圓C相交于A、B兩點(diǎn). (Ⅰ)求橢圓C的方程;
(Ⅱ)求 取值范圍;
(Ⅲ)若B關(guān)于x軸的對(duì)稱點(diǎn)是E,證明:直線AE與x軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心均在原點(diǎn)的橢圓與雙曲線有公共焦點(diǎn),且左、右焦點(diǎn)分別為F1、F2 , 這兩條曲線在第一象限的交點(diǎn)為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1、e2 , 則e1e2的取值范圍為(
A.
B.
C.(2,+∞)
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種蔬菜從1月1日起開始上市,通過市場調(diào)查,得到該蔬菜種植成本(單位:元/)與上市時(shí)間(單位:10天)的數(shù)據(jù)如下表:

時(shí)間

5

11

25

種植成本

15

10.8

15

(1)根據(jù)上表數(shù)據(jù),從下列函數(shù):,中(其中),選取一個(gè)合適的函數(shù)模型描述該蔬菜種植成本與上市時(shí)間的變化關(guān)系;

(2)利用你選取的函數(shù)模型,求該蔬菜種植成本最低時(shí)的上市時(shí)間及最低種植成本.

查看答案和解析>>

同步練習(xí)冊(cè)答案