【題目】已知向量 =(sinx,1), = ,函數(shù)f(x)= 的最大值為6.
(1)求A;
(2)將函數(shù)f(x)的圖象向左平移 個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的 倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象.求g(x)在[0, ]上的值域.
【答案】
(1)解:f(x)= = Asinxcosx+ cos2x
=A( sin2x+ cos2x)
=Asin(2x+ ),
∵函數(shù)f(x)= 的最大值為6,
∴A=6.
(2)解:f(x)=6sin(2x+ ) y=6sin(2(x+ )+ )=6sin(2x+ )
y=6sin(4x+ ),
則g(x)=6sin(4x+ ),
∵0≤x≤ ,
∴0≤4x≤ ,
∴ ≤4x+ ≤ ,
∴- ≤sin(4x+ )≤1,
∴﹣3≤6sin(4x+ )≤6,
即g(x)在[0, ]上的值域?yàn)閇﹣3,6]
【解析】(1)化f(x)= = Asinxcosx+ cos2x=A( sin2x+ cos2x)=Asin(2x+ ),從而求A;(2)由圖象變換得到g(x)=6sin(4x+ ),從而求函數(shù)的值域.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種“籠具”由內(nèi),外兩層組成,無(wú)下底面,內(nèi)層和外層分別是一個(gè)圓錐和圓柱,其中圓柱與圓錐的底面周長(zhǎng)相等,圓柱有上底面,制作時(shí)需要將圓錐的頂端剪去,剪去部分和接頭忽略不計(jì),已知圓柱的底面周長(zhǎng)為,高為,圓錐的母線長(zhǎng)為.
(1)求這種“籠具”的體積;
(2)現(xiàn)要使用一種紗網(wǎng)材料制作50個(gè)“籠具”,該材料的造價(jià)為每平方米8元,共需多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)= .
(1)若f(x)>k的解集為{x|x<﹣3或x>﹣2},求k的值;
(2)若對(duì)任意x>0,f(x)≤t恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為 (為參數(shù))
(1)求點(diǎn)的直角坐標(biāo);化曲線的參數(shù)方程為普通方程;
(2)設(shè)為曲線上一動(dòng)點(diǎn),以為對(duì)角線的矩形的一邊垂直于極軸,求矩形周長(zhǎng)的最小值,及此時(shí)點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】潮州統(tǒng)計(jì)局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分
布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在)。
(1)求居民月收入在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再?gòu)倪@人中分層抽樣方法抽出人作進(jìn)一步分析,則月收入在的這段應(yīng)抽多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為
A. 9 B. 18 C. 27 D. 36
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形與梯形所在的平面互相垂直, , ∥, , , , 為的中點(diǎn), 為中點(diǎn).
(1)求證:平面∥平面;
(2)求證:平面平面 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(x+ )+cosx,x∈R,
(1)求函數(shù)f(x)的最大值,并寫出當(dāng)f(x)取得最大值時(shí)x的取值集合;
(2)若α∈(0, ),f(α+ )= ,求f(2α)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, 平面.
(1)在線段上確定一點(diǎn),使得平面平面,并說(shuō)明理由;
(2)若二面角的大小為,求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com