已知角α的終邊上一點(diǎn)坐標(biāo)為P(x,-8),且cosα=
3
5
,則x=
 
考點(diǎn):任意角的三角函數(shù)的定義
專題:三角函數(shù)的求值
分析:利用任意角的三角函數(shù)的定義,求出cosα,列出關(guān)系式即可求解x的值.
解答: 解:角α的終邊上一點(diǎn)坐標(biāo)為P(x,-8),
∴OP=
x2+64
,∴cosα=
x
x2+64
=
3
5
,解得x=6.
故答案為:6.
點(diǎn)評:本題考查三角函數(shù)的定義,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2-2x+alnx (a∈R)

(Ⅰ)若函數(shù)y=f(x)存在極大值和極小值,求a的取值范圍;
(Ⅱ)設(shè)m,n分別為f(x)的極大值和極小值,其中m=f(x1),n=f(x2),且x1∈(
1
3
1
2
)
,求m+n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要使三點(diǎn)A(2,cos2θ),B(sin2θ,-
2
3
),C(-4,-4)共線,則角θ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:“若a>b>0,則log
1
2
a
<(log
1
2
b
)+1”,命題p的原命題,逆命題,否命題,逆否命題中真命題的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在程序中,x=RND表示將計(jì)算機(jī)產(chǎn)生的[0,1]區(qū)間上的均勻隨機(jī)數(shù)賦給變量x.利用如圖的程序框圖進(jìn)行隨機(jī)模擬,我們發(fā)現(xiàn):隨著輸入N值的增加,輸出的S值穩(wěn)定在某個常數(shù)上.這個常數(shù)是
 
.(要求給出具體數(shù)值)注:框圖中的“=”,即為“←”或?yàn)椤埃?”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,正確的是
 

①平面向量
a
b
的夾角為60°,
a
=(2,0),|
b
|=1,則|
a
+
b
|=
7

②已知
a
,
b
是平面內(nèi)兩個非零向量,則平面內(nèi)任一向量
c
都可表示為λ
a
b
,其中λ,μ∈R;
③已知
a
=(sinθ,
1+cosθ
),
b
=(1,
1-cosθ
),其中θ∈(π,
2
),則
a
b
;
④O是△ABC所在平面上一定點(diǎn),動點(diǎn)P滿足:
OP
=
OA
+λ(
AB
|
AB
|
+
AC
|
AC
|
),λ∈(0,+∞),則直線AP一定通過△ABC的內(nèi)心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個算法的流程圖如圖所示,則輸出y的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知映射f1:A→B,其中A=B=R,對應(yīng)法則f1:x→y=x2-2x+2;若對實(shí)數(shù)k∈B,在集合A中不存在原象,則k
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
|lgx|,x>0
2|x|,x≤0
,則函數(shù)y=2f2(x)-3f(x)+1的零點(diǎn)的個數(shù)為( 。﹤.
A、3B、4C、5D、6

查看答案和解析>>

同步練習(xí)冊答案