【題目】某樂(lè)園按時(shí)段收費(fèi),收費(fèi)標(biāo)準(zhǔn)為:每玩一次不超過(guò)小時(shí)收費(fèi)10元,超過(guò)小時(shí)的部分每小時(shí)收費(fèi)元(不足小時(shí)的部分按小時(shí)計(jì)算).現(xiàn)有甲、乙二人參與但都不超過(guò)小時(shí),甲、乙二人在每個(gè)時(shí)段離場(chǎng)是等可能的。為吸引顧客,每個(gè)顧客可以參加一次抽獎(jiǎng)活動(dòng)。

(1) 表示甲乙玩都不超過(guò)小時(shí)的付費(fèi)情況,求甲、乙二人付費(fèi)之和為44元的概率;

(2)抽獎(jiǎng)活動(dòng)的規(guī)則是:顧客通過(guò)操作按鍵使電腦自動(dòng)產(chǎn)生兩個(gè)[01]之間的均勻隨機(jī)數(shù),并按如右所示的程序框圖執(zhí)行.若電腦顯示中獎(jiǎng),則該顧客中獎(jiǎng);若電腦顯示謝謝,則不中獎(jiǎng),求顧客中獎(jiǎng)的概率.

【答案】(1)(2)

【解析】

試題(1)設(shè)甲付費(fèi)a元,乙付費(fèi)b元,其中ab=10,18,26,34,由此利用列舉法能求出甲、乙二人付費(fèi)之和為44的概率;(2)由已知0≤x≤1,0≤y≤1點(diǎn)(xy)在正方形OABC內(nèi),作出條件的區(qū)域,由此能求出顧客中獎(jiǎng)的概率

試題解析:(1)設(shè)甲付費(fèi)元,乙付費(fèi)元,其中

則甲、乙二人的費(fèi)用構(gòu)成的基本事件空間為:

16種情形.

其中,種情形符合題意.

甲、乙二人付費(fèi)之和為的概率為

2)由已知點(diǎn)如圖的正方形內(nèi),

由條件

得到的區(qū)域?yàn)閳D中陰影部分

,令;令;

由條件滿足的區(qū)域面積。

設(shè)顧客中獎(jiǎng)的事件為,則顧客中獎(jiǎng)的概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在正實(shí)數(shù)x,y使得x2+y2lny-lnx-axy=0aR)成立,則a的取值范圍是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線相交于兩點(diǎn),設(shè)點(diǎn),已知,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了16月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

日期

110

210

310

410

510

610

晝夜溫差(℃)

10

11

13

12

8

6

就診人數(shù)(個(gè))

22

25

29

26

16

12

1)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)25月份的數(shù)據(jù),求出關(guān)于的線性回歸方程

2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?

(參考數(shù)據(jù)

(參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)設(shè),若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,,且.

(1)求證:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20世紀(jì)70年代,流行一種游戲——角谷猜想,規(guī)則如下:任意寫出一個(gè)自然數(shù),按照以下的規(guī)律進(jìn)行變換,如果是奇數(shù),則下一步變成;如果是偶數(shù),則下一步變成,這種游戲的魅力在于無(wú)論你寫出一個(gè)多么龐大的數(shù)字,最后必然會(huì)落在谷底,下列程序框圖就是根據(jù)這個(gè)游戲而設(shè)計(jì)的,如果輸出的的值為6,則輸入的值可以為( )

A. 5或16B. 16C. 5或32D. 4或5或32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為研究女高中生身高與體重之間的關(guān)系,一調(diào)查機(jī)構(gòu)從某中學(xué)中隨機(jī)選取8名女高中生,其身高和體重數(shù)據(jù)如下表所示:

編號(hào)

1

2

3

4

5

6

7

8

身高

164

160

158

172

162

164

174

166

體重

60

46

43

48

48

50

61

52

該調(diào)查機(jī)構(gòu)繪制出該組數(shù)據(jù)的散點(diǎn)圖后分析發(fā)現(xiàn),女高中生的身高與體重之間有較強(qiáng)的線性相關(guān)關(guān)系.

1)調(diào)查員甲計(jì)算得出該組數(shù)據(jù)的線性回歸方程為,請(qǐng)你據(jù)此預(yù)報(bào)一名身高為的女高中生的體重;

2)調(diào)查員乙仔細(xì)觀察散點(diǎn)圖發(fā)現(xiàn),這8名同學(xué)中,編號(hào)為14的兩名同學(xué)對(duì)應(yīng)的點(diǎn)與其他同學(xué)對(duì)應(yīng)的點(diǎn)偏差太大,于是提出這樣的數(shù)據(jù)應(yīng)剔除,請(qǐng)你按照這名調(diào)查人員的想法重新計(jì)算線性回歸話中,并據(jù)此預(yù)報(bào)一名身高為的女高中生的體重;

3)請(qǐng)你分析一下,甲和乙誰(shuí)的模型得到的預(yù)測(cè)值更可靠?說(shuō)明理由.

附:對(duì)于一組數(shù)據(jù),其回歸方程的斜率和截距的最小二乘法估計(jì)分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】條形圖給出的是2017年全年及2018年全年全國(guó)居民人均可支配收入的平均數(shù)與中位數(shù),餅圖給出的是2018年全年全國(guó)居民人均消費(fèi)及其構(gòu)成,現(xiàn)有如下說(shuō)法:

①2018年全年全國(guó)居民人均可支配收入的平均數(shù)的增長(zhǎng)率低于2017年;

②2018年全年全國(guó)居民人均可支配收入的中位數(shù)約是平均數(shù)的

③2018年全年全國(guó)居民衣(衣著)食(食品煙酒)。ň幼。┬校ń煌ㄍㄐ牛┑闹С龀^(guò)人均消費(fèi)的.

則上述說(shuō)法中,正確的個(gè)數(shù)是( )

A. 3B. 2C. 1D. 0

查看答案和解析>>

同步練習(xí)冊(cè)答案