【題目】已知:直線(xiàn),一個(gè)圓與軸正半軸與軸正半軸都相切,且圓心到直線(xiàn)的距離為

)求圓的方程

是直線(xiàn)上的動(dòng)點(diǎn), , 是圓的兩條切線(xiàn), , 分別為切點(diǎn),求四邊形的面積的最小值.

)圓與軸交點(diǎn)記作,過(guò)作一直線(xiàn)與圓交于 兩點(diǎn), 中點(diǎn)為,求最大值.

【答案】(1);(2);(3).

【解析】試題分析:1圓的方程可設(shè)為, 圓心到直線(xiàn)的距離為,由點(diǎn)到直線(xiàn)距離列方程求解即可

2分析可得當(dāng)斜邊取最小值時(shí), 也最小,即四邊形的面積最小,從而可得最小面積;

(3),取關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)坐標(biāo),連接, ,可知的中位線(xiàn),所以要使最大,則最大即可.

試題解析:

)解:圓與 軸正半軸都相切,

∴圓的方程可設(shè)為 ,

圓心到直線(xiàn)的距離為

∴由點(diǎn)到直線(xiàn)距離公式得,解得,

∴半徑

∴圓的方程為

)解: , 是圓的兩條切線(xiàn), , 分別為切點(diǎn),

,

,

是圓的切線(xiàn),且為切點(diǎn),

,

∴當(dāng)斜邊取最小值時(shí), 也最小,即四邊形的面積最小.

即為的距離,

由()知

,

即∴

,

∴四邊形面積的最小值為

)解:依題,點(diǎn)坐標(biāo),

如圖,取關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)坐標(biāo),連接, ,

的中位線(xiàn),

所以, ,

所以,要使最大,則應(yīng)最大,

所以,如圖,當(dāng)點(diǎn)為的延長(zhǎng)線(xiàn)與圓的交點(diǎn)時(shí),

,

,

的最大值為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,圓C1和C2的參數(shù)方程分別是 (φ為參數(shù))和 (φ為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求圓C1和C2的極坐標(biāo)方程;
(2)射線(xiàn)OM:θ=a與圓C1的交點(diǎn)為O、P,與圓C2的交點(diǎn)為O、Q,求|OP||OQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“雙十一”已經(jīng)成為網(wǎng)民們的網(wǎng)購(gòu)狂歡節(jié),某電子商務(wù)平臺(tái)對(duì)某市的網(wǎng)民在今年“雙十一”的網(wǎng)購(gòu)情況進(jìn)行摸底調(diào)查,用隨機(jī)抽樣的方法抽取了100人,其消費(fèi)金額(百元)的頻率分布直方圖如圖所示:

(1)求網(wǎng)民消費(fèi)金額的平均值和中位數(shù);

(2)把下表中空格里的數(shù)填上,能否有90%的把握認(rèn)為網(wǎng)購(gòu)消費(fèi)與性別有關(guān);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有4個(gè)人去參加娛樂(lè)活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.
(1)求這4個(gè)人中恰有2人去參加甲游戲的概率;
(2)求這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;
(3)用X,Y分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記ξ=|X﹣Y|,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),解不等式;

(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的取值范圍;

(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過(guò)1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱,底面,,點(diǎn)的中點(diǎn)

求證:;

求證:平面

設(shè),,在線(xiàn)段上是否存在點(diǎn),使得?若存在,確定點(diǎn)的位置; 若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= ,其中a>﹣1.若f(x)在R上是增函數(shù),則實(shí)數(shù)a的取值范圍是(
A.[e+1,+∞)
B.(e+1,+∞)
C.(e﹣1,+∞)
D.[e﹣1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在單位正方體中,點(diǎn)P在線(xiàn)段上運(yùn)動(dòng),給出以下四個(gè)命題:

異面直線(xiàn)間的距離為定值;

三棱錐的體積為定值;

異面直線(xiàn)與直線(xiàn)所成的角為定值;

二面角的大小為定值.

其中真命題有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列中, , ,其前項(xiàng)和為.

1求數(shù)列的通項(xiàng)公式;

(2)設(shè)數(shù)列滿(mǎn)足,其前項(xiàng)和為為求證: .

查看答案和解析>>

同步練習(xí)冊(cè)答案