3.設(shè)函數(shù)f(x)=ex(sinx-cosx)(0≤x≤2015π),則函數(shù)f(x)的各極小值之和為(  )
A.-$\frac{{e}^{2π}(1-{e}^{2015π})}{1-{e}^{2π}}$B.-$\frac{{e}^{2π}(1-{e}^{2015π)}}{1-{e}^{π}}$
C.-$\frac{1-{e}^{2016π}}{1-{e}^{2π}}$D.-$\frac{{e}^{2π}(1-{e}^{2014π})}{1-{e}^{2π}}$

分析 先求出其導(dǎo)函數(shù),利用導(dǎo)函數(shù)求出其單調(diào)區(qū)間,進而找到其極小值f(2kπ+2π)=e2kπ+2π,再利用數(shù)列的求和方法來求函數(shù)f(x)的各極小值之和即可.

解答 解:∵函數(shù)f(x)=ex(sinx-cosx),
∴f′(x)=(ex)′(sinx-cosx)+ex(sinx-cosx)′
=2exsinx,
∵x∈(2kπ+π,2kπ+2π)時,f′(x)<0,x∈(2kπ+2π,2kπ+3π)時,f′(x)>0,
∴x∈(2kπ+π,2kπ+2π)時原函數(shù)遞減,x∈(2kπ+2π,2kπ+3π)時,函數(shù)f(x)=ex(sinx-cosx)遞增,
故當x=2kπ+2π時,f(x)取極小值,
其極小值為f(2kπ+2π)=e2kπ+2π[sin(2kπ+2π)-cos(2kπ+2π)]
=e2kπ+2π×(0-1)
=-e2kπ+2π
又0≤x≤2015π,
∴e2014π函數(shù)f(x)的各極小值之和S=-e-e-e-…-e2012π-e2014π
=$\frac{-{e}^{2π}[1-{(e}^{2π})^{1007}]}{1-{e}^{2π}}=-\frac{{e}^{2π}(1-{e}^{2014π})}{1-{e}^{2π}}$
故選:D

點評 本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值以及等比數(shù)列的求和.利用導(dǎo)數(shù)求得當x=2kπ+2π時,f(x)取極小值是解題的關(guān)鍵,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值是教學(xué)中的重點和難點,學(xué)生應(yīng)熟練掌握,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在區(qū)間[-$\frac{π}{6}$,$\frac{π}{2}$]上隨機取一個數(shù)x,則sinx+cosx∈[1,$\sqrt{2}$]的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,若S△ABC=12$\sqrt{3}$,ac=48,c-a=2,則b=2$\sqrt{13}$或$2\sqrt{37}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.拋物線C1:y2=2px(p>0)與雙曲線C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,\;b>0)$交于A,B兩點,C1與C2的兩條漸近線分別交于異于原點的兩點C,D,且AB,CD分別過C2,C1的焦點,則$\frac{|AB|}{|CD|}$=$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.直線l的方程為y=x+2,在l上任取一點P,若過點P且以雙曲線12x2-4y2=3的焦點為橢圓的焦點作橢圓,那么具有最短長軸的橢圓方程為$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{4}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前n項和為Sn,若4Sn=(2n-1)an+1+1,且a1=1.
(Ⅰ)證明:數(shù)列{an}是等差數(shù)列,并求出{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{1}{{{a_n}\sqrt{S_n}}}$,數(shù)列{bn}的前n項和為Tn,證明:Tn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C中心在坐標原點,對稱軸為坐標軸,且過點A(2$\sqrt{6}$,2)、B(3,3).
(Ⅰ) 求橢圓C的方程;
(Ⅱ)橢圓C上的任一點M(x1,y1),過原點O向半徑為r的圓M作兩條切線,是否存在r使得兩條切線的斜率之積s為定值,若是,求出r,s值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若a是f(x)=sinx-xcosx在x∈(0,2π)的一個零點,則?x∈(0,2π),下列不等式恒成立的是( 。
A.$\frac{sinx}{x}≥\frac{sina}{a}$B.cosa≥$\frac{sinx}{x}$C.$\frac{3π}{2}$≤a≤2πD.a-cosa≥x-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.半橢圓$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(y≥0)$和半圓x2+y2=b2(y≤0)組成曲線C,其中a>b>0,如圖所示,曲線C交x軸于A,B兩點,交y軸負半軸于點G.橢圓$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$的離心率為$\frac{{\sqrt{2}}}{2}$,F(xiàn)是它的一個焦點,點P是曲線C位于x軸上方的任意一點,且△PFG的周長是$2\sqrt{2}+2$.
(Ⅰ)求a,b的值;
(Ⅱ)若M是半圓x2+y2=b2(y≤0)除A,B外任意一點,C(-b,a),D(b,a),連接MC,MD分別交AB于點E,F(xiàn),求|AE|2+|BF|2的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案