如圖,AB為⊙O的直徑,直線CD與⊙O相切于E,AD垂直CDDBC垂直CDC,EF垂直ABF,連接AEBE.證明:
 
(1)∠FEB=∠CEB;
(2)EF2AD·BC.

(1)見解析(2)見解析

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,圓O的直徑AB的延長線與弦CD的延長線相交于點P,E為圓O上一點,AE=AC,求證:∠PDE=∠POC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形為邊長為a的正方形,以D為圓心,DA為半徑的圓弧與以BC為直徑的圓O交于F,連接CF并延長交AB于點E.

(1).求證:E為AB的中點;
(2).求線段FB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點D,E、F分別為弦AB與弦AC上的點,且BC·AE=DC·AF,B、E、F、C四點共圓.

(1)證明:CA是△ABC外接圓的直徑;
(2)若DB=BE=EA,求過B、E、F、C四點的圓的面積與△ABC外接圓面積的比值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在正△ABC中,點D,E分別在邊BCAC上,且BDBC,CECA,AD,BE相交于點P,求證:
 
(1)P,DC,E四點共圓;
(2)APCP.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,圓內(nèi)的兩條弦AB、CD相交于圓內(nèi)一點P,已知PA=PB=4,PC=PD.求CD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,PA、PB是圓O的兩條切線,A、B是切點,C是劣弧AB(不包括端點)上一點,直線PC交圓O于另一點D,Q在弦CD上,且求證:

(1);(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知BC是⊙O的弦,P是BC延長線上一點,PA與⊙O相切于點A,∠ABC=25°,∠ACB=80°,求∠P的度數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知為半圓的直徑,,為半圓上一點,過點作半圓的切線,過點,交圓于點,

(Ⅰ)求證:平分;
(Ⅱ)求的長.

查看答案和解析>>

同步練習冊答案