已知定義在R上的奇函數(shù)f(x)的圖象經(jīng)過點(diǎn)(2,2),且當(dāng)x∈(0,+∞)時(shí),f(x)=loga(x+2).
(1)求a的值;
(2)求函數(shù)f(x)的解析式.
(1)∵函數(shù)f(x)的圖象經(jīng)過點(diǎn)(2,2),
∴f(2)=loga(2+2)=2,∴a=2.
(2)∵函數(shù)f(x)為奇函數(shù),∴f(0)=0.
∵當(dāng)x∈(0,+∞)時(shí),f(x)=loga(x+2),
則當(dāng)x∈(-∞,0)時(shí),-x∈(0,+∞),
∴f(x)=-f(-x)=-log2(2-x).
綜上可得,f(x)=
log2(x+2),x>0
0,x=0
-log2(2-x),x<0
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),且
(1)求實(shí)數(shù)c的值;
(2)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)對(duì)任意x,y∈R都有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)<0,f(1)=-2
(1)證明f(x)為奇函數(shù).
(2)證明f(x)在R上是減函數(shù).
(3)若f(2x+5)+f(6-7x)>4,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=x2-2|x|-1(-3≤x≤3)
(1)證明f(x)是偶函數(shù);
(2)指出函數(shù)f(x)的單調(diào)增區(qū)間;
(3)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在R上定義的函數(shù)f(x)是偶函數(shù),且f(x)=f(2-x).若f(x)在區(qū)間[1,2]上是減函數(shù),則f(x)
( 。
A.在區(qū)間[-2,-1]上是增函數(shù),在區(qū)間[3,4]上是增函數(shù)
B.在區(qū)間[-2,-1]上是增函數(shù),在區(qū)間[3,4]上是減函數(shù)
C.在區(qū)間[-2,-1]上是減函數(shù),在區(qū)間[3,4]上是增函數(shù)
D.在區(qū)間[-2,-1]上是減函數(shù),在區(qū)間[3,4]上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)f(x)為定義在R上的奇函數(shù),當(dāng)x∈(0,1)時(shí),f(x)=
2x
2x+1

(1)求函數(shù)f(x)在(-1,1)上的解析式;
(2)判斷函數(shù)f(x)在(0,1)上的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)是定義在(-2,2)上的減函數(shù),滿足:f(-x)=-f(x),且f(m-1)+f(2m-1)>0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若f(x)是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(
1
2
)x+1
,則f(x)的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
px2+2
x-q
,對(duì)定義域中的所有x都滿足f(x)+f(-x)=0,f(2)=5
(1)求實(shí)數(shù)p,q的值;
(2)判斷函數(shù)f(x)在[1,+∞)上的單調(diào)性,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案