20.已知a>b>0,那么下列不等式成立的是(  )
A.2b-2a>0B.b2-a2>0C.|b|>|a|D.2a>2b

分析 由a>b>0,可得2a>2b,a2>b2,|b|<|a|,2a>2b,即可判斷出.

解答 解:∵a>b>0,∴2a>2b,a2>b2,|b|<|a|,2a>2b
因此A,B,C不正確,D正確;
故選:D.

點(diǎn)評(píng) 本題考查了不等式的性質(zhì)、指數(shù)函數(shù)的單調(diào)性,考查了推理能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=mx3+3(m-1)x2-m2+1(m>0)的單調(diào)減區(qū)間是(0,4),則m=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,PA⊥平面ABCD,點(diǎn)M,N分別為BC,PA的中點(diǎn),且AB=AC=1,AD=$\sqrt{2}$.
(Ⅰ)證明:MN∥平面PCD;
(Ⅱ)設(shè)直線AC與平面PBC所成角為α,當(dāng)α在$(0,\frac{π}{6})$內(nèi)變化時(shí),求二面角P-BC-A的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某程序框圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù),則可以輸出的函數(shù)是( 。
A.f(x)=x2B.f(x)=sinxC.f(x)=exD.f(x)=$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.從雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)F引圓x2+y2=a2的切線,切點(diǎn)為T,延長(zhǎng)FT交雙曲線右支于點(diǎn)P,若M是線段FP的中點(diǎn),O為原點(diǎn),則|MO|-|MT|的值是b-a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,陰影部分(包括邊界)為平面區(qū)域D,若點(diǎn)P(x,y)在區(qū)域D內(nèi),則z=x+2y的最小值是-1;x,y滿足的約束條件是$\left\{\begin{array}{l}2x-y+2≥0\\ x≤0\\ y≥0.\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.為了計(jì)算1×3×5×7×…×21的結(jié)果,設(shè)計(jì)如圖所示的程序框圖,則判斷框內(nèi)可填入的條件是( 。
A.n≤9B.n≤10C.n≤11D.n≤12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若a=$\sqrt{3},c=2,A=\frac{π}{3}$,則△ABC的面積為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ln(x+1)-x2-x.
(1)求函數(shù)的單調(diào)性;
(2)若關(guān)于x的方程f(x)=-$\frac{5}{2}$x+b在區(qū)間[0,2]上恰好有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;
(3)若對(duì)于不等式f(x)≤f(2x)+3x2+x-m2+3am+4對(duì)于任意a∈[-1,1],x∈[0,1]恒成立.求m的取值1范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案