【題目】設(shè)關(guān)于的一元二次方程.
(1)若是從0,1,2,3四個數(shù)中任取的一個數(shù), 是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若時從區(qū)間上任取的一個數(shù), 是從區(qū)間上任取的一個數(shù),求上述方程有實根的概率.
【答案】(1);(2).
【解析】試題分析:由二次方程有實數(shù)根可得滿足的條件,(Ⅰ)中由可以取得值得到所有基本事件個數(shù)及滿足條件的基本事件個數(shù),求其比值可求概率;(Ⅱ)中由范圍得到對應(yīng)的區(qū)域,并求得滿足的區(qū)域,求其面積比可求其概率
試題解析:設(shè)事件為“方程有實數(shù)根”.
當時,因為方程有實數(shù)根,
則
(Ⅰ)基本事件共12個,如下:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)其中第一個數(shù)表示的取值,第二個數(shù)表示的取值,事件包含9個基本事件,事件發(fā)生的概率為
(Ⅱ)實驗的全部結(jié)果所構(gòu)成的區(qū)域為,
構(gòu)成事件的區(qū)域為
所以所求的概率為:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線與圓相切,且交橢圓于, 兩點, 是橢圓的半焦距, .
(1)求的值;
(2)為坐標原點,若,求橢圓的方程;
(3)在(2)的條件下,設(shè)橢圓的左右頂點分別為, ,動點,直線, 與直線分別交于, 兩點,求線段的長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校隨機抽取100名學(xué)生調(diào)查寒假期間學(xué)生平均每天的學(xué)習(xí)時間,被調(diào)查的學(xué)生每天用于學(xué)習(xí)的時間介于1小時和11小時之間,按學(xué)生的學(xué)習(xí)時間分成5組:第一組,第二組,第三組,第四組,第五組,繪制成如圖所示的頻率分布直方圖.
(1)求學(xué)習(xí)時間在的學(xué)生人數(shù);
(2)現(xiàn)要從第三組、第四組中用分層抽樣的方法抽取6人,從這6人中隨機抽取2人交流學(xué)習(xí)心得,求這2人中至少有1人學(xué)習(xí)時間在第四組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=x2+(a+2)x﹣3,x∈[a,b]的圖象關(guān)于直線x=1對稱.
(1)求a、b的值和函數(shù)的零點
(2)當函數(shù)f(x)的定義域是[0,3]時,求函數(shù)f(x)的值域..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高二年級期末考試的學(xué)生中抽出60名學(xué)生,并統(tǒng)計了他們的化學(xué)成績(成績均為整數(shù)且滿分為100分),把其中不低于50分的分成五段,,…,后畫出如圖部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求出這60名學(xué)生中化學(xué)成績低于50分的人數(shù);
(2)估計高二年級這次考試化學(xué)學(xué)科及格率(60分以上為及格);
(3)從化學(xué)成績不及格的學(xué)生中隨機調(diào)查1人,求他的成績低于50分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中, 底面,底面是直角梯形, , , , ,點在上,且.
(Ⅰ)已知點在上,且,求證:平面平面;
(Ⅱ)當二面角的余弦值為多少時,直線與平面所成的角為?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)國家環(huán)保部最新修訂的《環(huán)境空氣質(zhì)量標準》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米。某城市環(huán)保部分隨機抽取的一居民區(qū)過去20天PM2.5的24小時平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下:
組別 | PM2.5平均濃度 | 頻數(shù) | 頻率 |
第一組 | (0,25] | 3 | 0.15 |
第二組 | (25,50] | 12 | 0.6 |
第三組 | (50,75] | 3 | 0.15 |
第四組 | (75,100] | 2 | 0.1 |
(Ⅰ)從樣本中PM2.5的24小時平均濃度超過50微克/立方米的5天中,隨機抽取2天,求恰好有一天PM2.5的24小時平均濃度超過75微克/立方米的概率;
(II)求樣本平均數(shù),并根據(jù)樣本估計總計的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下圖中,四邊形 ABCD是等腰梯形, , ,O、Q分別為線段AB、CD的中點,OQ與EF的交點為P,OP=1,PQ=2,現(xiàn)將梯形ABCD沿EF折起,使得,連結(jié)AD、BC,得一幾何體如圖所示.
(Ⅰ)證明:平面ABCD平面ABFE;
(Ⅱ)若上圖中, ,CD=2,求平面ADE與平面BCF所成銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com