如圖,在三棱錐V-ABC中,∠VAB=∠VAC=∠ABC=90°,試判斷平面VBA與平面VBC的位置關(guān)系,并說(shuō)明理由.
考點(diǎn):平面與平面之間的位置關(guān)系
專(zhuān)題:圓錐曲線的定義、性質(zhì)與方程
分析:由題意知VA⊥AB,VA⊥AC,可得VA⊥平面ABC,可證VA⊥BC;又∠ABC=90°可得AB⊥BC,這樣可證得BC⊥平面VBA,從而可證面面垂直.
解答: 解:∵∠VAB=∠VAC=90°,∴VA⊥AB,VA⊥AC,又AB∩AC=A,
∴VA⊥平面ABC.∴VA⊥BC.
∠ABC=90°,∴AB⊥BC,VA∩VB=V,
∴BC⊥平面VBA.又BC?平面VBC,
∴平面VBA⊥平面VBC.
點(diǎn)評(píng):本題考查了面面垂直的判定定理,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(π+α)=-
3
5
,且α為第二象限的角.求
(1)sin2α的值;  
(2)
sin(2π-α)+cos(π-α)
sin(2π+α)-cos(-α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=
1
2
xsinx.下列命題正確的是
 

①函數(shù)y=f(x)的圖象是中心對(duì)稱(chēng)圖形,對(duì)稱(chēng)中心是原點(diǎn);
②對(duì)任意實(shí)數(shù)x,|f(x)|≤
1
2
|x|均成立;
③函數(shù)y=f(x)的圖象與x軸有無(wú)窮多個(gè)公共點(diǎn),且任意相鄰兩公共點(diǎn)間的距離相等;
④函數(shù)y=f(x)的圖象與直線y=
1
2
x有無(wú)窮多個(gè)公共點(diǎn),且任意相鄰兩公共點(diǎn)間的距離相等;
⑤函數(shù)y=f(x)有無(wú)數(shù)個(gè)極大值點(diǎn),任意相鄰極大值點(diǎn)間的距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果非零實(shí)數(shù)a、b、c兩兩不相等且2b=a+c,證明:
2
b
=
1
a
+
1
c
不成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖四棱錐A-BCDE中,平面ABC⊥平面BCDE,△ABC為邊長(zhǎng)是2的正三角形,BC=BE=2CD,BE⊥BC,CD∥BE.
(1)求證:AE⊥BD;
(2)求二面角B-AD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某產(chǎn)品的廣告費(fèi)用x與銷(xiāo)售額y的統(tǒng)計(jì)數(shù)據(jù)如表:
廣告費(fèi)用x(萬(wàn)元)42365
銷(xiāo)售額y(萬(wàn)元)4019296151
(Ⅰ)根據(jù)上表可得求線性回歸方程;(注:y=a+bx,其中b=
x1y1+x2y2+xnyn-n
.
x
.
y
x12+x22+xn2-n
.
x
2
;a=
.
y
-b
.
x

(Ⅱ)據(jù)此模型,估計(jì)廣告費(fèi)用為9萬(wàn)元時(shí)銷(xiāo)售額為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一動(dòng)圓恒過(guò)點(diǎn)A(-
2
,0)且恒與定圓B:(x-
2
2+y2=12相切.
(1)求動(dòng)圓圓心C(2)的軌跡M(3)的方程;
(2)過(guò)點(diǎn)p(0,2)的直線l與軌跡M交于不同的兩點(diǎn)E、F,求
PE
PF
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,∠ACB=45°,BC=4,過(guò)動(dòng)點(diǎn)A作AD⊥BC,垂足D在線段BC上且異于點(diǎn)B,連接AB,沿AD將△ABD折起,使∠BDC=90°(如圖2所示)

(1)當(dāng)BD的長(zhǎng)為多少時(shí),△BCD的體積最大;
(2)當(dāng)△BCD的體積最大時(shí),設(shè)點(diǎn)M為棱AC的中點(diǎn),試求直線BM與CD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中:
①若m>0,則方程x2-x+m=0有實(shí)根的逆否命題;
②若x>1,y>1,則x+y>2的逆命題;
③對(duì)任意的滿足x2>1的實(shí)數(shù)x,有x>1”的否定形式;
④△>0是一元二次方程ax2+bx+c=0有一正根和一負(fù)根的充要條件;
⑤若x2+y2≠0,則x,y不全為零”的否命題;
⑥“若x-3
1
2
是有理數(shù),則x是無(wú)理數(shù)”的逆否命題;
是真命題的有
 

查看答案和解析>>

同步練習(xí)冊(cè)答案