已知函數(shù)f(x)=
2-2x,x≤-1
2x+2,x>-1
,則滿足f(a)≥2的實(shí)數(shù)a的取值范圍是( 。
A、(-∞,-2)∪(0,+∞)
B、(-1,0)
C、(-2,0)
D、(-∞,-1]∪[0,+∞)
考點(diǎn):分段函數(shù)的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)不等式的解法,利用分類討論即可得到結(jié)論.
解答: 解:函數(shù)f(x)=
2-2x,x≤-1
2x+2,x>-1
則滿足f(a)≥2,
若a≤-1,則由f(a)≥2,得f(a)=2-2a≥2,解得a≤-
1
2
,可得a≤-1.
若a>1,則由f(a)≥2,得f(a)=2a+2≥2,解得a≥0,
綜上a∈(-∞,-1]∪[0,+∞),
故選:D.
點(diǎn)評(píng):本題主要考查分段函數(shù)的應(yīng)用,不等式的解法,利用分類討論是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知PA垂直于矩形ABCD所在的平面,PA=3,AB=2,BC=
3
,則二面角P-BD-A的正切值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的首項(xiàng)a1=1,數(shù)列{bn}為等比數(shù)列且bn=
an+1
an
,若b10b11=2015 
1
10
,則a21=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上頂點(diǎn)為A,右頂點(diǎn)為B,離心率e=
2
2
,O為坐標(biāo)原點(diǎn),圓O:x2+y2=
2
3
與直線AB相切.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)直線l:y=k(x-2)(k≠0)與橢圓C相交于E、F兩不同點(diǎn),若橢圓C上一點(diǎn)P滿足OP∥l.求△EPF面積的最大值及此時(shí)的k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位為了了解辦公樓用電量y(度)與氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了四個(gè)工作量與當(dāng)天平均氣溫,并制作了對(duì)照表:
 氣溫(℃) 1813  10-1 
 用電量(度) 24 3438  64
由表中數(shù)據(jù)得到線性回歸方程
y
=-2x+a,當(dāng)氣溫為-4℃時(shí),預(yù)測(cè)用電量均為( 。
A、68度B、52度
C、12度D、28度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓O的半徑為1,P為圓周上一點(diǎn),現(xiàn)將如圖放置的邊長(zhǎng)為1的正方形(實(shí)線所示,正方形的頂點(diǎn)A與點(diǎn)P重合)沿圓周逆時(shí)針滾動(dòng),點(diǎn)A第一次回到點(diǎn)P的位置,則點(diǎn)A走過的路徑的長(zhǎng)度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:
sina-cosa+1
sina+cosa-1
=
cosa
1-sina

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx,且f(x+1)為偶函數(shù),定義:滿足f(x)=x的實(shí)數(shù)x稱為函數(shù)f(x)不動(dòng)點(diǎn),若函數(shù)f(x)有且僅有一個(gè)不動(dòng)點(diǎn)
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=f(x)+
k
x
+
1
2
x2在(0,
6
3
]上是單調(diào)減函數(shù),求實(shí)數(shù)k的取值范圍;
(3)在(2)的條件下,討論并求h(x)=x+
k
4x
+1的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ-cosθ=-
1
5
,求下列各式的值:
(1)sinθ•cosθ;
(2)sin4θ+cos4θ.
(3)tanθ.

查看答案和解析>>

同步練習(xí)冊(cè)答案