【題目】已知拋物線:上一點到其焦點的距離為5.
(1)求與的值;
(2)設動直線與拋物線相交于,兩點,問:在軸上是否存在與的取值無關的定點,使得?若存在,求出點的坐標;若不存在,說明理由.
科目:高中數學 來源: 題型:
【題目】陜西關中的秦腔表演樸實,粗獷,細膩,深刻,再有電子布景的獨有特效,深得觀眾喜愛.戲曲相關部門特意進行了“喜愛看秦腔”調查,發(fā)現年齡段與愛看秦腔的人數比存在較好的線性相關關系,年齡在,,,的愛看人數比分別是0.10,0.18,0.20,0.30.現用各年齡段的中間值代表年齡段,如42代表.由此求得愛看人數比關于年齡段的線性回歸方程為.那么,年齡在的愛看人數比為( )
A.0.42B.0.39C.0.37D.0.35
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數的圖象向右平移個單位長度得到的圖象,若的對稱中心為坐標原點,則關于函數有下述四個結論:
①的最小正周期為 ②若的最大值為2,則
③在有兩個零點 ④在區(qū)間上單調
其中所有正確結論的標號是( )
A.①③④B.①②④C.②④D.①③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在直角梯形中,AB∥CD,,且.現以為一邊向梯形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,如圖2.
(Ⅰ)求證:BC⊥平面DBE;
(Ⅱ)求點D到平面BEC的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某地區(qū)某種昆蟲產卵數和溫度有關.現收集了一只該品種昆蟲的產卵數(個)和溫度()的7組觀測數據,其散點圖如所示:
根據散點圖,結合函數知識,可以發(fā)現產卵數和溫度可用方程來擬合,令,結合樣本數據可知與溫度可用線性回歸方程來擬合.根據收集到的數據,計算得到如下值:
27 | 74 | 182 |
表中,.
(1)求和溫度的回歸方程(回歸系數結果精確到);
(2)求產卵數關于溫度的回歸方程;若該地區(qū)一段時間內的氣溫在之間(包括與),估計該品種一只昆蟲的產卵數的范圍.(參考數據:,,,,.)
附:對于一組數據,,…,,其回歸直線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠在制造產品時需要用到長度為698mm的A型和長度為518mm的B型兩種鋼管,工廠利用長度為4000mm的鋼管原材料,裁剪成若干A型和B型鋼管。假設裁剪時損耗忽略不計,裁剪后所剩廢料與原材料的百分比稱為廢料率.
(1)有兩種裁剪方案的廢料率小于4.5%,請說明這兩種方案并計算它們的廢料率;
(2)工廠現有100根原材料鋼管,一根A型和一根B型鋼管為一套毛胚。按(1)中的方案裁剪,最多可裁剪多少套毛胚?最終的廢料率為多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com