【題目】如圖,橢圓 的左右焦點分別為的、,離心率為;過拋物線焦點的直線交拋物線于、兩點,當(dāng)時, 點在軸上的射影為。連結(jié)并延長分別交于、兩點,連接; 與的面積分別記為, ,設(shè).
(Ⅰ)求橢圓和拋物線的方程;
(Ⅱ)求的取值范圍.
【答案】(1) ,;(2) .
【解析】試題分析:(Ⅰ )由題意得得,根據(jù)點M在拋物線上得,又由,得 ,可得,解得,從而得,可得曲線方程。(Ⅱ )設(shè), ,分析可得,先設(shè)出直線的方程為 ,由,解得,從而可求得,同理可得,故可將化為m的代數(shù)式,用基本不等式求解可得結(jié)果。
試題解析:
(Ⅰ)由拋物線定義可得,
∵點M在拋物線上,
∴,即 ①
又由,得
將上式代入①,得
解得
∴
,
所以曲線的方程為,曲線的方程為。
(Ⅱ)設(shè)直線的方程為,
由消去y整理得,
設(shè), .
則,
設(shè), ,
則,
所以, ②
設(shè)直線的方程為 ,
由,解得,
所以,
由②可知,用代替,
可得,
由,解得,
所以,
用代替,可得
所以
,當(dāng)且僅當(dāng)時等號成立。
所以的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形為等腰梯形,為正方形,平面平面,,.
(1)求證:平面平面;
(2)點為線段上一動點,求與平面所成角正弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐O﹣ABCD的底面是邊長為1的菱形,OA=2,∠ABC=60°,OA⊥平面ABCD,M、N分別是OA、BC的中點.
(1)求證:直線MN∥平面OCD;
(2)求點M到平面OCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,過橢圓的焦點且垂直于軸的直線被橢圓截得的弦長為.
(1)求橢圓的方程;
(2)設(shè)點均在橢圓上,點在拋物線上,若的重心為坐標(biāo)原點,且的面積為,求點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρcosθ=4,曲線C的極坐標(biāo)方程為ρ=2cosθ+2sinθ,以極點為坐標(biāo)原點O,極軸為x軸的正半軸建立直角坐標(biāo)系,射線l':y=kx(x≥0,0<k<1)與曲線C交于O,M兩點.
(Ⅰ)寫出直線l的直角坐標(biāo)方程以及曲線C的參數(shù)方程;
(Ⅱ)若射線l′與直線l交于點N,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司人數(shù)眾多為鼓勵員工利用網(wǎng)絡(luò)進(jìn)行營銷,準(zhǔn)備為員工辦理手機(jī)流量套餐.為了解員工手機(jī)流量使用情況,按照男員工和女員工的比例分層抽樣,得到名員工的月使用流量(單位:)的數(shù)據(jù),其頻率分布直方圖如圖所示.
(1)求的值,并估計這名員工月使用流量的平均值(同一組中的數(shù)據(jù)用中點值代表;
(2)若將月使用流量在以上(含)的員工稱為“手機(jī)營銷達(dá)人”,填寫下面的列聯(lián)表,能否有超過的把握認(rèn)為“成為手機(jī)營銷達(dá)人與員工的性別有關(guān)”;
男員工 | 女員工 | 合計 | |
手機(jī)營銷達(dá)人 | 5 | ||
非手機(jī)營銷達(dá)人 | |||
合計 | 200/span> |
參考公式及數(shù)據(jù):,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(3)若這名員工中有名男員工每月使用流量在,從每月使用流量在的員工中隨機(jī)抽取名進(jìn)行問卷調(diào)查,記女員工的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《高中數(shù)學(xué)課程標(biāo)準(zhǔn)》(2017版)規(guī)定了數(shù)學(xué)直觀想象學(xué)科的六大核心素養(yǎng),為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對二人進(jìn)行了測驗,根據(jù)測驗結(jié)果繪制了雷達(dá)圖(如圖,每項指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是(注:雷達(dá)圖,又可稱為戴布拉圖、蜘蛛網(wǎng)圖,可用于對研究對象的多維分析)( )
A.甲的直觀想象素養(yǎng)高于乙
B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)據(jù)分析素養(yǎng)
C.乙的數(shù)學(xué)建模素養(yǎng)與數(shù)學(xué)運(yùn)算素養(yǎng)一樣
D.乙的六大素養(yǎng)整體水平低于甲
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】BMI指數(shù)(身體質(zhì)量指數(shù),英文為BodyMassIndex,簡稱BMI)是衡量人體胖瘦程度的一個標(biāo)準(zhǔn),BMI=體重(kg)/身高(m)的平方.根據(jù)中國肥胖問題工作組標(biāo)準(zhǔn),當(dāng)BMI≥28時為肥胖.某地區(qū)隨機(jī)調(diào)查了1200名35歲以上成人的身體健康狀況,其中有200名高血壓患者,被調(diào)查者的頻率分布直方圖如下:
(1)求被調(diào)查者中肥胖人群的BMI平均值;
(2)填寫下面列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為35歲以上成人患高血壓與肥胖有關(guān).
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
肥胖 | 不肥胖 | 合計 | |
高血壓 | |||
非高血壓 | |||
合計 |
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長為1,線段上有兩個動點,且,現(xiàn)有如下四個結(jié)論:
;平面;
三棱錐的體積為定值;異面直線所成的角為定值,
其中正確結(jié)論的序號是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com