已知f(x)=4x-a•2x+1+3,a∈R.
(1)若a=1,x∈[0,2],求f(x)的值域.
(2)f(x)=0有解,求a的取值范圍.
考點:函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)用換元法,設(shè)t=2x(t∈[1,4]),把f(x)化為g(t)在[1,4]上的函數(shù),求出g(t)的值域即可;
(2)用換元法,設(shè)t=2x(t>0),把f(x)=0有解化為求t2-2at+3=0有正根時a的取值范圍即可.
解答: 解:(1)設(shè)t=2x,(t∈[1,4]),…(1分)
∵a=1,可設(shè)g(t)=t2-2t+3,(t∈[1,4]);
∴g(t)是[1,4]上的增函數(shù),
∴g(t)min=g(1)=2,
g(t)max=g(4)=11;
∴g(t)∈[2,11],
即f(x)的值域是[2,11];
(2)f(x)=0,即4x-a•2x+1+3=0,
設(shè)t=2x,(t>0),∴t2-2at+3=0;
f(x)=0有解,即t2-2at+3=0有正根,
∵t=0時,02-2a•0+3=3>0,
∴t2-2at+3=0有正根,
只需滿足:
4a2-12≥0
a>0

解得a≥
3
點評:本題考查了用換元法求函數(shù)的值域以及判定一元二次方程有實數(shù)根時系數(shù)應(yīng)滿足的條件是什么,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋擲一枚骰子,記事件A為“落地時向上的數(shù)是奇數(shù)”,記事件B為“落地時向上的數(shù)是偶數(shù)”,事件C為“落地時向上的數(shù)是2的倍數(shù)”,事件D為“落地時向上的數(shù)是2或4”,則下列每對事件是互斥事件但不是對立事件的是(  )
A、A與DB、A與B
C、B與CD、B與D

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,E是A1B1的中點,則異面直線AD1與CE所成的角為( 。
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1,A1A的中點;
(1)求
BN
的長;
(2)求cos<
BA1
CB1
>的值;
(3)求證:A1B⊥C1M.
(4)求CB1與平面A1ABB1所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
6
)cos2x-
1
2

(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)將函數(shù)f(x)的圖象向右平移
π
8
個單位,再將圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,若關(guān)于x的方程g(x)-k=0在區(qū)間[0,
π
2
]上有解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)=
-x2+4x , x>0
0, x=0
x2+mx , x<0

(1)求實數(shù)m的值;
(2)畫出函數(shù)y=f(x)的圖象,根據(jù)圖象寫出函數(shù)y=f(x)的單調(diào)區(qū)間;
(3)若函數(shù)f(x)在區(qū)間[-1,a-2]上是單調(diào)函數(shù),試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,點A是上頂點,點P(1,
3
2
)在橢圓上,且|PF1|+|PF2|=4.
(Ⅰ)求橢圓的方程;
(Ⅱ)若圓C的圓心在y軸上,且與直線AF2及x軸均相切,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知定點A(-1,1).動點P到點(0,
1
4
)的距離比P到y(tǒng)=-1的距離小
3
4

(1)求點P的軌跡C的方程;
(2)若Q是軌跡C上異于點P的一個點,且
PQ
OA
(λ>0).直線OP與QA交于點M.問:是否存在點P,使得△PQA和△PAM的面積滿足S△PQA=4S△PAM?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,線段AB的兩個端點A、B分別在x軸、y軸上滑動,|AB|=5,點M是線段AB上一點,且
AM
MB
(λ>0).
(1)求點M的軌跡E的方程,并指明軌跡E是何種曲線;
(2)當(dāng)λ=
2
3
時,過點P(1,1)的直線與軌跡E交于C、D兩點,且P為弦CD的中點,求直線CD的方程.

查看答案和解析>>

同步練習(xí)冊答案