【題目】已知數(shù)列{an}及等差數(shù)列{bn},若a1=3, (n≥2),a1=b2 , 2a3+a2=b4 ,
(1)證明數(shù)列{an﹣2}為等比數(shù)列;
(2)求數(shù)列{an}及數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)數(shù)列{anbn}的前n項(xiàng)和為Tn , 求Tn .
【答案】
(1)解:a1=3, , ,
則數(shù)列{an﹣2}為首項(xiàng)為1,公比為 的等比數(shù)列
(2)解:由(1)可得 ,即為 , ,
,可得等差數(shù)列{bn}的公差 ,
則 .
(3)證明:數(shù)列{anbn}的前n項(xiàng)和為Tn , 設(shè) ,
,
相減可得
,化簡(jiǎn)可得 ,則 .
【解析】(1)當(dāng)數(shù)列滿足=q(q為常數(shù))時(shí)即為等比數(shù)列;(2)根據(jù)等比數(shù)列的通項(xiàng)公式即可求出數(shù)列的通項(xiàng)公式,進(jìn)而可求出an,再根據(jù)an可求出b2和b4,然后求出公差d,最后根據(jù)等差數(shù)列的通項(xiàng)公式bn=bm+(n-m)d即可求出bn;(3)利用”錯(cuò)位相減求和法“即可求解.
【考點(diǎn)精析】掌握等差數(shù)列的通項(xiàng)公式(及其變式)和等比數(shù)列的通項(xiàng)公式(及其變式)是解答本題的根本,需要知道通項(xiàng)公式:或;通項(xiàng)公式:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列不等式的解集是空集的是( )
A.x2﹣x+1>0
B.﹣2x2+x+1>0
C.2x﹣x2>5
D.x2+x>2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位N名員工參加“社區(qū)低碳你我他”活動(dòng).他們的年齡在25歲至50歲之間.按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖所示.下表是年齡的頻率分布表.
區(qū)間 | [25,30) | [30,35) | [35,40) | [40,45) | [45,50] |
人數(shù) | 25 | a | b |
(1)求正整數(shù)a,b,N的值;
(2)現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求恰有1人在第3組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,滿足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果 , 是平面 內(nèi)所有向量的一組基底,那么( )
A.若實(shí)數(shù) , ,使 ,則
B.空間任一向量 可以表示為 ,這里 , 是實(shí)數(shù)
C. , 不一定在平面 內(nèi)
D.對(duì)平面 內(nèi)任一向量 ,使 的實(shí)數(shù) , 有無(wú)數(shù)對(duì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:在數(shù)列 中,若 為常數(shù))則稱 為“等方差數(shù)列”,下列是對(duì)“等方差數(shù)列”的有關(guān)判斷( )
①若 是“等方差數(shù)列”,在數(shù)列 是等差數(shù)列;
② 是“等方差數(shù)列”;
③若 是“等方差數(shù)列”,則數(shù)列 為常)也是“等方差數(shù)列”;
④若 既是“等方差數(shù)列”又是等差數(shù)列,則該數(shù)列是常數(shù)數(shù)列.
其中正確命題的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com